881 resultados para Family and population
Resumo:
SMA members Neville Owen, Adrian Bauman, Wendy Brown and Stewart Trost have recently been awarded two NHMRC grants for research which will focus on understanding and influencing physical activity to improve population health outcomes. They were awarded under the Capital Building for Population Health scheme and the Program Grants scheme. The total value of the grants is 86.5 million over five years. The new grants will allow the researchers to conduct rigorous behavioural and epidemiological research which will inform the development of innovative primary and secondary prevention initiatives and determine their effectiveness. This is important, because physical activity is significantly implicated in the prevention and management of established chronic health problems such as cardiovascular disease, type 2 diabetes, osteoporosis and some forms of cancer. It also has a key role to play in addressing the growing epidemic of childhood and adult obesity, and in the maintenance of functional well-being with age. However, in recent years, physical activity levels in Australia have declined, indicating that the net sum of all our efforts to encourage physical activity participation require renewed and innovative efforts. The proposed research programs will be based on the researchers' cross-disciplinary backgrounds in exercise physiology, psychology, health promotion and epidemiology, and will be integrated across four main domains:..
Resumo:
Bladder infections affect millions of people yearly, and recurrent symptomatic infections (cystitis) are very common. The rapid increase in infections caused by multidrug-resistant uropathogens threatens to make recurrent cystitis an increasingly troubling public health concern. Uropathogenic Escherichia coli (UPEC) cause the vast majority of bladder infections. Upon entry into the lower urinary tract, UPEC face obstacles to colonization that constitute population bottlenecks, reducing diversity, and selecting for fit clones. A critical mucosal barrier to bladder infection is the epithelium (urothelium). UPEC bypass this barrier when they invade urothelial cells and form intracellular bacterial communities (IBCs), a process which requires type 1 pili. IBCs are transient in nature, occurring primarily during acute infection. Chronic bladder infection is common and can be either latent, in the form of the quiescent intracellular reservoir (QIR), or active, in the form of asymptomatic bacteriuria (ASB/ABU) or chronic cystitis. In mice, the fate of bladder infection, QIR, ASB, or chronic cystitis, is determined within the first 24 h of infection and constitutes a putative host–pathogen mucosal checkpoint that contributes to susceptibility to recurrent cystitis. Knowledge of these checkpoints and bottlenecks is critical for our understanding of bladder infection and efforts to devise novel therapeutic strategies.
Resumo:
This research project provides a scientifically robust approach for assessing the resilience of water supply systems, which are critical infrastructure, to impacts of climate change and population growth. An approach for the identification of trigger points that allows timely and appropriate management actions to be taken to avoid catastrophic system failure is an important outcome of this project. In the current absence of a formal method to evaluate the resilience of a water supply system, the approach developed in this study was based on the characterisation of resilience of a water supply system to a range of surrogate measures. Accordingly, a set of indicators are proposed to evaluate system behaviour and logistic regression analysis was used to assess system behaviour under predicted rainfall, storage and demand conditions.
Resumo:
This thesis explored how biophilic urbanism, or the integration of natural features into increasingly dense urban environments, has become mainstream in cities around the world. Fourteen factors uncovered through a case study investigation provide insight for decision makers and change agents in Australia to use biophilic urbanism to address impacts of population growth, climate change and resource shortages. The thesis uses an inductive research approach to explore how barriers to the integration of multi-functional vegetated and water design elements into the built environment, such that these become and standard inclusions in urban design and development processes.
Resumo:
This article considers the debate over patent law, informed consent, and benefit-sharing in the context of biomedical research in respect of Indigenous communities. In particular, it focuses upon three key controversies over large-scale biology projects, involving Indigenous populations. These case studies are representative of the tensions between research organisations, Indigenous communities, and funding agencies. Section two considers the aims and origins of the Human Genome Diversity Project, and criticisms levelled against the venture by Indigenous peak bodies and anti-biotechnology groups, such as the Rural Advancement Foundation International. It examines the ways in which the United Nations Educational, Scientific, and Cultural Organization (UNESCO) grappled with questions of patent law, informed consent, and benefit sharing in relation to population genetics. Section three focuses upon the ongoing litigation in Tilousi v. Arizona State University, and the Havasupai Tribe v. Arizona State University. In this matter, the Havasupai tribe from the Grand Canyon in the United States brought legal action against the Arizona State University and its researchers for using genetic data for unauthorised purposes - namely, genetic research into schizophrenia, migration, and inbreeding. The litigation raises questions about informed consent, negligence, and larger matters of human rights. Section four explores the legal and ethical issues raised by the Genographic Project. It considers the aims and objectives of the venture, and the criticisms levelled against it by Indigenous communities, and anti-biotechnology groups. It examines the response of the United Nations Permanent Forum on Indigenous Issues to the Genographic Project. It charts the debate over the protection of traditional knowledge in various international fora. The conclusion recommends a number of measures to better regulate large-scale biology projects involving the participation of Indigenous communities.
Resumo:
We introduce a framework for population analysis of white matter tracts based on diffusion-weighted images of the brain. The framework enables extraction of fibers from high angular resolution diffusion images (HARDI); clustering of the fibers based partly on prior knowledge from an atlas; representation of the fiber bundles compactly using a path following points of highest density (maximum density path; MDP); and registration of these paths together using geodesic curve matching to find local correspondences across a population. We demonstrate our method on 4-Tesla HARDI scans from 565 young adults to compute localized statistics across 50 white matter tracts based on fractional anisotropy (FA). Experimental results show increased sensitivity in the determination of genetic influences on principal fiber tracts compared to the tract-based spatial statistics (TBSS) method. Our results show that the MDP representation reveals important parts of the white matter structure and considerably reduces the dimensionality over comparable fiber matching approaches.
Resumo:
1 Five experiments were conducted during 1995-99 in stone fruit orchards on the Central Coast and in inland New South Wales, Australia, on the use of synthetic aggregation pheromones and a coattractant to suppress populations of the ripening fruit pests Carpophilus spp. (Coleoptera: Nitidulidae). 2 Perimeter-based suppression traps baited with pheromone and coattractant placed at 3m intervals around small fruit blocks, caught large numbers of Carpophilus spp. Very small populations of Carpophilus spp. occurred within blocks, and fruit damage was minimal. 3 Carpophilus spp. populations in stone fruit blocks 15-370m from suppression traps were also small and non-damaging, indicating a large zone of pheromone attractivity. 4 Pheromone/coattractant-baited suppression traps appeared to divert Carpophilus spp. from nearby (130 m) ripening stone fruit. Ten metal drums containing decomposing fruit, baited with pheromone and treated with insecticide, attracted Carpophilus spp. and appeared to reduce populations and damage to ripening fruit at distances of 200-500 m. Populations and damage were significantly greater within 200m of the drums and may have been caused by ineffective poisoning or poor quality/overcrowding of fruit resources in the drums. 5 Suppression of Carpophilus spp. populations using synthetic aggregation pheromones and a coattractant appears to be a realistic management option in stone fruit orchards. Pheromone-mediated diversion of beetle populations from ripening fruit may be more practical than perimeter trapping, but more research is needed on the effective range of Carpophilus pheromones and the relative merits of trapping compared to attraction to insecticide-treated areas.
Resumo:
Paropsis atomaria is a recently emerged pest of eucalypt plantations in subtropical Australia. Its broad host range of at least 20 eucalypt species and wide geographical distribution provides it the potential to become a serious forestry pest both within Australia and, if accidentally introduced, overseas. Although populations of P. atomaria are genetically similar throughout its range, population dynamics differ between regions. Here, we determine temperature-dependent developmental requirements using beetles sourced from temperate and subtropical zones by calculating lower temperature thresholds, temperature-induced mortality, and day-degree requirements. We combine these data with field mortality estimates of immature life stages to produce a cohort-based model, ParopSys, using DYMEX™ that accurately predicts the timing, duration, and relative abundance of life stages in the field and number of generations in a spring–autumn (September–May) field season. Voltinism was identified as a seasonally plastic trait dependent upon environmental conditions, with two generations observed and predicted in the Australian Capital Territory, and up to four in Queensland. Lower temperature thresholds for development ranged between 4 and 9 °C, and overall development rates did not differ according to beetle origin. Total immature development time (egg–adult) was approximately 769.2 ± S.E. 127.8 DD above a lower temperature threshold of 6.4 ± S.E. 2.6 °C. ParopSys provides a basic tool enabling forest managers to use the number of generations and seasonal fluctuations in abundance of damaging life stages to estimate the pest risk of P. atomaria prior to plantation establishment, and predict the occurrence and duration of damaging life stages in the field. Additionally, by using local climatic data the pest potential of P. atomaria can be estimated to predict the risk of it establishing if accidentally introduced overseas. Improvements to ParopSys’ capability and complexity can be made as more biological data become available.
Resumo:
1. Many organisms inhabit strongly fluctuating environments but their demography and population dynamics are often analysed using deterministic models and elasticity analysis, where elasticity is defined as the proportional change in population growth rate caused by a proportional change in a vital rate. Deterministic analyses may not necessarily be informative because large variation in a vital rate with a small deterministic elasticity may affect the population growth rate more than a small change in a less variable vital rate having high deterministic elasticity. 2. We analyse a stochastic environment model of the red kangaroo (Macropus rufus), a species inhabiting an environment characterized by unpredictable and highly variable rainfall, and calculate the elasticity of the stochastic growth rate with respect to the mean and variability in vital rates. 3. Juvenile survival is the most variable vital rate but a proportional change in the mean adult survival rate has a much stronger effect on the stochastic growth rate. 4. Even if changes in average rainfall have a larger impact on population growth rate, increased variability in rainfall may still be important also in long-lived species. The elasticity with respect to the standard deviation of rainfall is comparable to the mean elasticities of all vital rates but the survival in age class 3 because increased variation in rainfall affects both the mean and variability of vital rates. 5. Red kangaroos are harvested and, under the current rainfall pattern, an annual harvest fraction of c. 20% would yield a stochastic growth rate about unity. However, if average rainfall drops by more than c. 10%, any level of harvesting may be unsustainable, emphasizing the need for integrating climate change predictions in population management and increase our understanding of how environmental stochasticity translates into population growth rate.
Resumo:
Front row l-r: Beatrice Durand, Francine Durand and Aenny Catzenstein, the boys are Ara-Serge Donabedian and Patrick Matthiesen and the adults are Susan Prior, Francis Matthiesen, Maren Matthiesen, Nino Fabri and Olga Matthiesen,
Resumo:
Dinner scene with Franz Mattheisen left, daughter Susan Mattheisen next to him, next daughter Maren Matthiesen, his wife Olga Matthiesen at the end of the table. Beatrice Durand is facing the camera
Resumo:
Front row l-r: Francine Durand, Beatrice Durand and Aenny Catzenstein, the boys are Ara-Serge Donabedian and Patrick Matthiesen and the adults are Susan Prior, Francis Matthiesen, Maren Matthiesen, Nino Fabri and Olga Matthiesen,
Resumo:
Digital Image