925 resultados para Face recognition


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Whereas previous research has demonstrated that trait ratings of faces at encoding leads to enhanced recognition accuracy as compared to feature ratings, this set of experiments examines whether ratings given after encoding and just prior to recognition influence face recognition accuracy. In Experiment 1 subjects who made feature ratings just prior to recognition were significantly less accurate than subjects who made no ratings or trait ratings. In Experiment 2 ratings were manipulated at both encoding and retrieval. The retrieval effect was smaller and nonsignificant, but a combined probability analysis showed that it was significant when results from both experiments are considered jointly. In a third experiment exposure duration at retrieval, a potentially confounding factor in Experiments 1 and 2, had a nonsignificant effect on recognition accuracy, suggesting that it probably does not explain the results from Experiments 1 and 2. These experiments demonstrate that face recognition accuracy can be influenced by processing instructions at retrieval.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We address the problem of 3D-assisted 2D face recognition in scenarios when the input image is subject to degradations or exhibits intra-personal variations not captured by the 3D model. The proposed solution involves a novel approach to learn a subspace spanned by perturbations caused by the missing modes of variation and image degradations, using 3D face data reconstructed from 2D images rather than 3D capture. This is accomplished by modelling the difference in the texture map of the 3D aligned input and reference images. A training set of these texture maps then defines a perturbation space which can be represented using PCA bases. Assuming that the image perturbation subspace is orthogonal to the 3D face model space, then these additive components can be recovered from an unseen input image, resulting in an improved fit of the 3D face model. The linearity of the model leads to efficient fitting. Experiments show that our method achieves very competitive face recognition performance on Multi-PIE and AR databases. We also present baseline face recognition results on a new data set exhibiting combined pose and illumination variations as well as occlusion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[EN]In face recognition, where high-dimensional representation spaces are generally used, it is very important to take advantage of all the available information. In particular, many labelled facial images will be accumulated while the recognition system is functioning, and due to practical reasons some of them are often discarded. In this paper, we propose an algorithm for using this information. The algorithm has the fundamental characteristic of being incremental. On the other hand, the algorithm makes use of a combination of classification results for the images in the input sequence. Experiments with sequences obtained with a real person detection and tracking system allow us to analyze the performance of the algorithm, as well as its potential improvements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objectives of this thesis are to validate an improved principal components analysis (IPCA) algorithm on images; designing and simulating a digital model for image compression, face recognition and image detection by using a principal components analysis (PCA) algorithm and the IPCA algorithm; designing and simulating an optical model for face recognition and object detection by using the joint transform correlator (JTC); establishing detection and recognition thresholds for each model; comparing between the performance of the PCA algorithm and the performance of the IPCA algorithm in compression, recognition and, detection; and comparing between the performance of the digital model and the performance of the optical model in recognition and detection. The MATLAB © software was used for simulating the models. PCA is a technique used for identifying patterns in data and representing the data in order to highlight any similarities or differences. The identification of patterns in data of high dimensions (more than three dimensions) is too difficult because the graphical representation of data is impossible. Therefore, PCA is a powerful method for analyzing data. IPCA is another statistical tool for identifying patterns in data. It uses information theory for improving PCA. The joint transform correlator (JTC) is an optical correlator used for synthesizing a frequency plane filter for coherent optical systems. The IPCA algorithm, in general, behaves better than the PCA algorithm in the most of the applications. It is better than the PCA algorithm in image compression because it obtains higher compression, more accurate reconstruction, and faster processing speed with acceptable errors; in addition, it is better than the PCA algorithm in real-time image detection due to the fact that it achieves the smallest error rate as well as remarkable speed. On the other hand, the PCA algorithm performs better than the IPCA algorithm in face recognition because it offers an acceptable error rate, easy calculation, and a reasonable speed. Finally, in detection and recognition, the performance of the digital model is better than the performance of the optical model.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this report, a face recognition system that is capable of detecting and recognizing frontal and rotated faces was developed. Two face recognition methods focusing on the aspect of pose invariance are presented and evaluated - the whole face approach and the component-based approach. The main challenge of this project is to develop a system that is able to identify faces under different viewing angles in realtime. The development of such a system will enhance the capability and robustness of current face recognition technology. The whole-face approach recognizes faces by classifying a single feature vector consisting of the gray values of the whole face image. The component-based approach first locates the facial components and extracts them. These components are normalized and combined into a single feature vector for classification. The Support Vector Machine (SVM) is used as the classifier for both approaches. Extensive tests with respect to the robustness against pose changes are performed on a database that includes faces rotated up to about 40 degrees in depth. The component-based approach clearly outperforms the whole-face approach on all tests. Although this approach isproven to be more reliable, it is still too slow for real-time applications. That is the reason why a real-time face recognition system using the whole-face approach is implemented to recognize people in color video sequences.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A dissociation between human neural systems that participate in the encoding and later recognition of new memories for faces was demonstrated by measuring memory task-related changes in regional cerebral blood flow with positron emission tomography. There was almost no overlap between the brain structures associated with these memory functions. A region in the right hippocampus and adjacent cortex was activated during memory encoding but not during recognition. The most striking finding in neocortex was the lateralization of prefrontal participation. Encoding activated left prefrontal cortex, whereas recognition activated right prefrontal cortex. These results indicate that the hippocampus and adjacent cortex participate in memory function primarily at the time of new memory encoding. Moreover, face recognition is not mediated simply by recapitulation of operations performed at the time of encoding but, rather, involves anatomically dissociable operations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Biometrics is afield of study which pursues the association of a person's identity with his/her physiological or behavioral characteristics.^ As one aspect of biometrics, face recognition has attracted special attention because it is a natural and noninvasive means to identify individuals. Most of the previous studies in face recognition are based on two-dimensional (2D) intensity images. Face recognition based on 2D intensity images, however, is sensitive to environment illumination and subject orientation changes, affecting the recognition results. With the development of three-dimensional (3D) scanners, 3D face recognition is being explored as an alternative to the traditional 2D methods for face recognition.^ This dissertation proposes a method in which the expression and the identity of a face are determined in an integrated fashion from 3D scans. In this framework, there is a front end expression recognition module which sorts the incoming 3D face according to the expression detected in the 3D scans. Then, scans with neutral expressions are processed by a corresponding 3D neutral face recognition module. Alternatively, if a scan displays a non-neutral expression, e.g., a smiling expression, it will be routed to an appropriate specialized recognition module for smiling face recognition.^ The expression recognition method proposed in this dissertation is innovative in that it uses information from 3D scans to perform the classification task. A smiling face recognition module was developed, based on the statistical modeling of the variance between faces with neutral expression and faces with a smiling expression.^ The proposed expression and face recognition framework was tested with a database containing 120 3D scans from 30 subjects (Half are neutral faces and half are smiling faces). It is shown that the proposed framework achieves a recognition rate 10% higher than attempting the identification with only the neutral face recognition module.^

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This dissertation establishes a novel system for human face learning and recognition based on incremental multilinear Principal Component Analysis (PCA). Most of the existing face recognition systems need training data during the learning process. The system as proposed in this dissertation utilizes an unsupervised or weakly supervised learning approach, in which the learning phase requires a minimal amount of training data. It also overcomes the inability of traditional systems to adapt to the testing phase as the decision process for the newly acquired images continues to rely on that same old training data set. Consequently when a new training set is to be used, the traditional approach will require that the entire eigensystem will have to be generated again. However, as a means to speed up this computational process, the proposed method uses the eigensystem generated from the old training set together with the new images to generate more effectively the new eigensystem in a so-called incremental learning process. In the empirical evaluation phase, there are two key factors that are essential in evaluating the performance of the proposed method: (1) recognition accuracy and (2) computational complexity. In order to establish the most suitable algorithm for this research, a comparative analysis of the best performing methods has been carried out first. The results of the comparative analysis advocated for the initial utilization of the multilinear PCA in our research. As for the consideration of the issue of computational complexity for the subspace update procedure, a novel incremental algorithm, which combines the traditional sequential Karhunen-Loeve (SKL) algorithm with the newly developed incremental modified fast PCA algorithm, was established. In order to utilize the multilinear PCA in the incremental process, a new unfolding method was developed to affix the newly added data at the end of the previous data. The results of the incremental process based on these two methods were obtained to bear out these new theoretical improvements. Some object tracking results using video images are also provided as another challenging task to prove the soundness of this incremental multilinear learning method.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The influence of temporal association on the representation and recognition of objects was investigated. Observers were shown sequences of novel faces in which the identity of the face changed as the head rotated. As a result, observers showed a tendency to treat the views as if they were of the same person. Additional experiments revealed that this was only true if the training sequences depicted head rotations rather than jumbled views: in other words, the sequence had to be spatially as well as temporally smooth. Results suggest that we are continuously associating views of objects to support later recognition, and that we do so not only on the basis of the physical similarity, but also the correlated appearance in time of the objects.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Previous electrophysiological studies revealed that human faces elicit an early visual event-related potential (ERP) within the occipito-temporal cortex, the N170 component. Although face perception has been proposed to rely on automatic processing, the impact of selective attention on N170 remains controversial both in young and elderly individuals. Using early visual ERP and alpha power analysis, we assessed the influence of aging on selective attention to faces during delayed-recognition tasks for face and letter stimuli, examining 36 elderly and 20 young adults with preserved cognition. Face recognition performance worsened with age. Aging induced a latency delay of the N1 component for faces and letters, as well as of the face N170 component. Contrasting with letters, ignored faces elicited larger N1 and N170 components than attended faces in both age groups. This counterintuitive attention effect on face processing persisted when scenes replaced letters. In contrast with young, elderly subjects failed to suppress irrelevant letters when attending faces. Whereas attended stimuli induced a parietal alpha band desynchronization within 300-1000 ms post-stimulus with bilateral-to-right distribution for faces and left lateralization for letters, ignored and passively viewed stimuli elicited a central alpha synchronization larger on the right hemisphere. Aging delayed the latency of this alpha synchronization for both face and letter stimuli, and reduced its amplitude for ignored letters. These results suggest that due to their social relevance, human faces may cause paradoxical attention effects on early visual ERP components, but they still undergo classical top-down control as a function of endogenous selective attention. Aging does not affect the face bottom-up alerting mechanism but reduces the top-down suppression of distracting letters, possibly impinging upon face recognition, and more generally delays the top-down suppression of task-irrelevant information.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

La informació biomètrica s'ha convertit en una tecnologia complementària a la criptografia que permet administrar còmodament les dades criptogràfiques. Són útils dues necessitats importants: en primer lloc, posar aquestes dades sempre a mà i, a més, fent fàcilment identificable el seu legítim propietari. En aquest article es proposa un sistema que integra la signatura biomètrica de reconeixement facial amb un esquema de signatura basat en la identitat, de manera que la cara de l'usuari esdevé la seva clau pública i la ID del sistema. D'aquesta manera, altres usuaris poden verificar els missatges utilitzant fotos del remitent, proporcionant un intercanvi raonable entre la seguretat del sistema i la usabilitat, així com una manera molt més senzilla d'autenticar claus públiques i processos de distribució.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Psychophysical studies suggest that humans preferentially use a narrow band of low spatial frequencies for face recognition. Here we asked whether artificial face recognition systems have an improved recognition performance at the same spatial frequencies as humans. To this end, we estimated recognition performance over a large database of face images by computing three discriminability measures: Fisher Linear Discriminant Analysis, Non-Parametric Discriminant Analysis, and Mutual Information. In order to address frequency dependence, discriminabilities were measured as a function of (filtered) image size. All three measures revealed a maximum at the same image sizes, where the spatial frequency content corresponds to the psychophysical found frequencies. Our results therefore support the notion that the critical band of spatial frequencies for face recognition in humans and machines follows from inherent properties of face images, and that the use of these frequencies is associated with optimal face recognition performance.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

As important social stimuli, faces playa critical role in our lives. Much of our interaction with other people depends on our ability to recognize faces accurately. It has been proposed that face processing consists of different stages and interacts with other systems (Bruce & Young, 1986). At a perceptual level, the initial two stages, namely structural encoding and face recognition, are particularly relevant and are the focus of this dissertation. Event-related potentials (ERPs) are averaged EEG signals time-locked to a particular event (such as the presentation of a face). With their excellent temporal resolution, ERPs can provide important timing information about neural processes. Previous research has identified several ERP components that are especially related to face processing, including the N 170, the P2 and the N250. Their nature with respect to the stages of face processing is still unclear, and is examined in Studies 1 and 2. In Study 1, participants made gender decisions on a large set of female faces interspersed with a few male faces. The ERP responses to facial characteristics of the female faces indicated that the N 170 amplitude from each side of the head was affected by information from eye region and by facial layout: the right N 170 was affected by eye color and by face width, while the left N 170 was affected by eye size and by the relation between the sizes of the top and bottom parts of a face. In contrast, the P100 and the N250 components were largely unaffected by facial characteristics. These results thus provided direct evidence for the link between the N 170 and structural encoding of faces. In Study 2, focusing on the face recognition stage, we manipulated face identity strength by morphing individual faces to an "average" face. Participants performed a face identification task. The effect of face identity strength was found on the late P2 and the N250 components: as identity strength decreased from an individual face to the "average" face, the late P2 increased and the N250 decreased. In contrast, the P100, the N170 and the early P2 components were not affected by face identity strength. These results suggest that face recognition occurs after 200 ms, but not earlier. Finally, because faces are often associated with social information, we investigated in Study 3 how group membership might affect ERP responses to faces. After participants learned in- and out-group memberships of the face stimuli based on arbitrarily assigned nationality and university affiliation, we found that the N170 latency differentiated in-group and out-group faces, taking longer to process the latter. In comparison, without group memberships, there was no difference in N170 latency among the faces. This dissertation provides evidence that at a neural level, structural encoding of faces, indexed by the N170, occurs within 200 ms. Face recognition, indexed by the late P2 and the N250, occurs shortly afterwards between 200 and 300 ms. Social cognitive factors can also influence face processing. The effect is already evident as early as 130-200 ms at the structural encoding stage.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents a novel, fast and accurate appearance-based method for infrared face recognition. By introducing the Optimum-Path Forest classifier, our objective is to get good recognition rates and effectively reduce the computational effort. The feature extraction procedure is carried out by PCA, and the results are compared to two other well known supervised learning classifiers; Artificial Neural Networks and Support Vector Machines. The achieved performance asserts the promise of the proposed framework. ©2009 IEEE.