996 resultados para FUEL ELEMENTS
Resumo:
"SCNC" (Series) "Metallurgy and Ceramics"
Resumo:
A fuel additive comprising one or more complex oxides having a nominal compn. as set out in formula (1): AxB1-yMyOn; wherein A is selected from one or more group III elements including the lanthanide elements or one or more divalent or monovalent cations; B is selected from one or more elements with at. no. 22 to 24, 40 to 42 and 72 to 75; M is selected from one or more elements with at. no. 25 to 30; x is defined as a no. where 0 < x ≤ l; y is defined as a no. where 0 ≤ y < 0.5. [on SciFinder(R)]
Resumo:
A simple method of calculating the elemental stoichiometric coefficient, φe has been developed, which can easily be applied to multicomponent fuel-oxidizer compositions. The method correctly predicts whether a mixture is fuel lean, fuel rich, or stoichiometrically balanced. The total composition of oxidizing (or reducing) elements of the mixture appears to be related to the thermochemistry of the system. For the reaction of ammonium perchlorate and an organic fuel the heat of reaction varies linearly with the total composition of oxidizing elements. The physical significance of such a correlation based on thermochemical reasoning is highlighted in the paper.
Resumo:
This paper presents results of a feasibility study aimed at developing a zero-transuranic-discharge fuel cycle based on the U-Th-TRU ternary cycle. The design objective is to find a fuel composition (mixture of thorium, enriched uranium, and recycled transuranic components) and fuel management strategy resulting in an equilibrium charge-discharge mass flow. In such a fuel cycle scheme, the quantity and isotopic vector of the transuranium (TRU) component is identical at the charge and discharge time points, thus allowing the whole amount of the TRU at the end of the fuel irradiation period to be separated and reloaded into the following cycle. The TRU reprocessing activity losses are the only waste stream that will require permanent geological storage, virtually eliminating the long-term radiological waste of the commercial nuclear fuel cycle. A detailed three-dimensional full pressurized water reactor (PWR) core model was used to analyze the proposed fuel composition and management strategy. The results demonstrate the neutronic feasibility of the fuel cycle with zero-TRU discharge. The amount of TRU and enriched uranium loaded reach equilibrium after about four TRU recycles. The reactivity coefficients were found to be within a range typical for a reference PWR core. The soluble boron worth is reduced by a factor of ∼2 from a typical PWR value. Nevertheless, the results indicate the feasibility of an 18-month fuel cycle design with an acceptable beginning-of-cycle soluble boron concentration even without application of burnable poisons.
Resumo:
A new combined Non Fertile and Uranium (CONFU) fuel assembly is proposed to limit the actinides that need long-term high-level waste storage from the pressurized water reactor (PWR) fuel cycle. In the CONFU assembly concept, ∼20% of the UO2 fuel pins are replaced with fertile free fuel hosting the transuranic elements (TRUs) generated in the previous cycle. This leads to a fuel cycle sustainable with respect to net TRU generation, and the amount and radiotoxicity of the nuclear waste can be significantly reduced in comparison with the conventional once-through UO2 fuel cycle. It is shown that under the constraints of acceptable power peaking limits, the CONFU assembly exhibits negative reactivity feedback coefficients comparable in values to those of the reference UO2 fuel. Feasibility of the PWR core operation and control with complete TRU recycle has been shown based on full-core three-dimensional neutronic simulation. However, gradual buildup of small amounts of Cm and Cf challenges fuel reprocessing and fabrication due to the high spontaneous fission rates of these nuclides and heat generation by some Pu, Am, and Cm isotopes. Feasibility of the processing steps becomes more attainable if the time between discharge and reprocessing is 20 yr or longer.
Resumo:
The feasibility of a conventional PWR fuel cycle with complete recycling of TRU elements in the same reactor is investigated. A new Combined Non-fertile and Uranium (CONFU) fuel assembly where about 20% of the uranium fuel pins are replaced with fertile free fuel (FFF) hosting TRU generated in the previous cycle is proposed. In this sustainable fuel cycle based on the CONFU fuel assembly concept, the amount and radiotoxicity of the nuclear waste can be significantly reduced in comparison with the conventional once-through UO 2 fuel cycle. It is shown that under the constraints of acceptable power peaking limits, the CONFU assembly exhibits negative reactivity feedback coefficients comparable in values to those of the reference UO2 fuel. Moreover, the effective delayed neutron fraction is about the same as for UO2-fueled cores. Therefore, feasibility of the PWR core operation and control with complete TRU recycle has been shown in principle. However, gradual build up of small amounts of Cm and Cf challenges fuel reprocessing and fabrication due to the high spontaneous fissions rates of these nuclides and heat generation by some Pu, Am, and Cm isotopes. Feasibility of the processing steps becomes more attainable if the time between discharge and reprocessing is 20 years or longer. The implications for the entire fuel cycle will have to be addressed in future studies.
Resumo:
Catalysis research underpins the science of modern chemical processing and fuel technologies. Catalysis is commercially one of the most important technologies in national economies. Solid state heterogeneous catalyst materials such as metal oxides and metal particles on ceramic oxide substrates are most common. They are typically used with commodity gases and liquid reactants. Selective oxidation catalysts of hydrocarbon feedstocks is the dominant process of converting them to key industrial chemicals, polymers and energy sources.[1] In the absence of a unique successfiil theory of heterogeneous catalysis, attempts are being made to correlate catalytic activity with some specific properties of the solid surface. Such correlations help to narrow down the search for a good catalyst for a given reaction. The heterogeneous catalytic performance of material depends on many factors such as [2] Crystal and surface structure of the catalyst. Thermodynamic stability of the catalyst and the reactant. Acid- base properties of the solid surface. Surface defect properties of the catalyst.Electronic and semiconducting properties and the band structure. Co-existence of dilferent types of ions or structures. Adsorption sites and adsorbed species such as oxygen.Preparation method of catalyst , surface area and nature of heat treatment. Molecular structure of the reactants. Many systematic investigations have been performed to correlate catalytic performances with the above mentioned properties. Many of these investigations remain isolated and further research is needed to bridge the gap in the present knowledge of the field.