969 resultados para FREQUENCY APPROACH
Resumo:
A method for the accurate computation of the current densities produced in a wide-runged bi-planar radio-frequency coil is presented. The device has applications in magnetic resonance imaging. There is a set of opposing primary rungs, symmetrically placed on parallel planes and a similar arrangement of rungs on two parallel planes surrounding the primary serves as a shield. Current densities induced in these primary and shielding rungs are calculated to a high degree of accuracy using an integral-equation approach, combined with the inverse finite Hilbert transform. Once these densities are known, accurate electrical and magnetic fields are then computed without difficulty. Some test results are shown. The method is so rapid that it can be incorporated into optimization software. Some preliminary fields produced from optimized coils are presented.
Resumo:
As nuclear magnetic resonance imaging and spectroscopy move inexorably toward higher field-strength magnets in search of improved signal-to-noise ratio, spectral resolution, and spatial resolution, the way in which radiofrequency (RF) probes are designed changes. At higher frequencies, resonant cavities become the favored RF ''coil'' type and may be built using streamline elements to reduce the inductance of the system. In modeling such systems, the quasi-static approach of assuming that current flows evenly in all conductor cross sections and that adjacent conductors do not affect each other becomes less reasonable. The proximity of RF conductors in resonators typically causes RF eddy currents to flow, whereby the current density in each rung is altered by the RF fields generated by nearby conductors. The proper understanding and prediction of how resonators will perform require a model of the current densities flowing in conducting sections, including all RF eddy current effects. Very few models of this type have been presented in the literature. This article presents an overview of one such model and of how it may be applied to a variety of resonators, both shielded and unshielded, circular, and elliptical, in cross section. Results are presented from a shielded head coil operating at 2 tesla. (C) 1997 John Wiley & Sons, Inc.
Resumo:
Neuromodulation is the branch of neurophysiology related to the therapeutic effects of electrical stimulations of the nervous system. There are currently different practical applications of neuromodulation techniques for the treatment of various neurological disorders, such as deep brain stimulation for Parkinson`s disease and repetitive transcranial magnetic stimulation (rTMS) for major depression. An increasing number of studies have been devoted to the analgesic effects of rTMS in chronic pain patients. RTMS has been used either as a therapeutic tool per se, or as a preoperative test in patients undergoing epidural precentral gyrus stimulation. High-frequency rTMS (a parts per thousand yen5 Hz) is considered to be excitatory, while low-frequency stimulation (a parts per thousand currency sign1 Hz) is considered to exert an inhibitory effect over neuronal populations of the primary motor cortex. However, other parameters of stimulation may play a central role on its clinical effects such as the type of coil, its orientation over the scalp, and the total number of rTMS sessions performed. Experimental data from animals, healthy volunteers, and neuropathic pain patients have suggested that stimulation of the primary motor cortex by rTMS is able to activate brain regions implicated in the processing of the different aspects of chronic pain, and influence brain regions involved in the endogenous opioid system. Over twenty prospective randomized sham-controlled trials have studied the analgesic effects of rTMS on chronic pain. Most of the patients included in these trials had central or peripheral neuropathic pain. Although most studies used a single session of stimulation, recent studies have shown that the analgesic effects of rTMS may outlast the stimulation period for many days when repetitive sessions are performed. This opens the possibility to use rTMS as a therapeutic tool of its own in the armamentarium against neuropathic pain.
Resumo:
We aimed to quantify fatigue frequency and evolution in amyotrophic lateral sclerosis (ALS), and to correlate fatigue with factors such as age, sex, educational level, disease duration, functionality, quality of life, dyspnoea, depression and sleepiness. Sixty ALS patients (test group: TG) selected by El Escorial criteria and 60 normal individuals (control group: CG) matched according to sex and age, were followed every three months, during 9 months, by means of self-report scales: Fatigue Assessment Instrument (Fatigue Severity Scale plus three qualitative subscales); ALS Functional Rating Scale; McGill Quality of Life Questionnaire; dyspnoea analogical scale; Beck Depression Inventory and Epworth Sleepiness Scale. Fatigue was reported by 83% of TG (median: 3.6, interquartile range 1.5-5.4), compared with 20% of CG (median: 1, 1 - 1), and was significantly greater in the TG (p < 0.001, Mann-Whitney test). Fatigue severity increased by the ninth month of the study (p=0.0008, Friedman, Muller-Dunn post test). There was no correlation between fatigue and other parameters, except for an inverse correlation with age at disease onset (p=0.0395, Spearman rank correlation). In conclusion, fatigue was frequent in ALS, greater in the youngest patients and worsened during follow-up. Possibly, ALS related fatigue is an independent factor, which deserves individualized approach and treatment.
Resumo:
Injury triggers inflammatory responses and tissue repair. Several treatments are currently in use to accelerate healing: however, more efficient formulations are still needed for specific injuries. Since unsaturated fatty acids modulate immune responses, we aimed to evaluate their therapeutic effects on wound healing. Skin wounds were induced in BALB/c mice and treated for 5 days with n-3, n-9 fatty acids or vehicle (control). n-9 treated mice presented smaller wounds than control and n-3 at 120 h post-surgery (p.s.). Collagen III mRNA,TIMP1 and MMP9 were significantly elevated in n-9 group compared to n-3 or vehicle at 120 h p.s. Among the inflammatory mediators studied we found that IL-10, TNF-alpha and IL-17 were also higher in n-9 treated group compared to n-3 or vehicle at 120 h p.s. Interestingly, COX2 had decreased expression on wound tissue treated with n-9. Inflammatory infiltrate analysis revealed diminished frequency of CD4(+), CD8(+) and CD11b(+) cells in n-9 wounds at 24 and 120 h p.s., which was not related to cell death, since in vitro apoptosis experiments did not show any cell damage after fatty acids administration. These results suggested that unsaturated fatty acids, specifically n-9, modulate the inflammation in the wound and enhance reparative response in vivo. n-9 may be a useful tool in the treatment of cutaneous wounds. (C) 2010 Elsevier GmbH. All rights reserved.
Resumo:
Subcycling, or the use of different timesteps at different nodes, can be an effective way of improving the computational efficiency of explicit transient dynamic structural solutions. The method that has been most widely adopted uses a nodal partition. extending the central difference method, in which small timestep updates are performed interpolating on the displacement at neighbouring large timestep nodes. This approach leads to narrow bands of unstable timesteps or statistical stability. It also can be in error due to lack of momentum conservation on the timestep interface. The author has previously proposed energy conserving algorithms that avoid the first problem of statistical stability. However, these sacrifice accuracy to achieve stability. An approach to conserve momentum on an element interface by adding partial velocities is considered here. Applied to extend the central difference method. this approach is simple. and has accuracy advantages. The method can be programmed by summing impulses of internal forces, evaluated using local element timesteps, in order to predict a velocity change at a node. However, it is still only statistically stable, so an adaptive timestep size is needed to monitor accuracy and to be adjusted if necessary. By replacing the central difference method with the explicit generalized alpha method. it is possible to gain stability by dissipating the high frequency response that leads to stability problems. However. coding the algorithm is less elegant, as the response depends on previous partial accelerations. Extension to implicit integration, is shown to be impractical due to the neglect of remote effects of internal forces acting across a timestep interface. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
An equivalent unit cell waveguide approach (WGA) to designing 4 multilayer microstrip reflectarray of variable size patches is presented. In this approach, a normal incidence of a plane wave on an infinite periodic array of radiating elements is considered to obtain reflection coefficient phase curves for the reflectarray's elements. It is shown that this problem is equivalent to the problem of reflection of the dominant TEM mode in a waveguide with patches interleaved by layers of dielectric. This waveguide problem is solved using a field matching technique and a method of moments (MoM). Based on this solution, a fast computer algorithm is developed to generate reflection coefficient phase curves for a multilayer microstrip patch reflectarray. The validity of the developed algorithm is tested against alternative approaches and Agilent High Frequency Structure Simulator (HFSS). Having confirmed the validity of the WGA approach, a small offset feed two-layer microstrip patch array is designed and developed. This reflectarray is tested experimentally and shows good performance.
Resumo:
OBJECTIVE: To analyze the core group for sexually transmitted infections (STI) among college students. METHODS: Cross-sectional study carried out in a convenience sample comprising 711 college students of the public university of Morelos, Mexico, between 2001 and 2003. Sociodemographic and sexual behavior information were collected using self-applied questionnaires. Herpes simplex 2 (HSV-2) infection was tested in the blood. The number of sexual partners in the last year and cocaine consumption were used as indicators to construct the dependent variable "level of STI risk" in three categories: low, medium and high risk (core group). A multinomial analysis was conducted to evaluate whether different sex behaviors were associated with the variable "level of STI risk". RESULTS: There was significant association between HSV-2 seroprevalence and the variable "level of STI risk": 13%, 5.6% and 3.8% were found in high (core group), medium and low categories, respectively. There were gender differences regarding the core group. Men started having sexual intercourse earlier, had more sex partners, higher alcohol and drug consumption, higher frequency of sex intercourse with sex workers, exchanging sex for money, occasional and concurrent partners compared to women. CONCLUSIONS: The study findings suggest existing contextual characteristics in the study population that affect their sex behavior. In Mexico, the cultural conception of sexuality is determined mainly by gender differences where men engage in higher risky sexual behavior than women.
Resumo:
This paper studies the Fermi-Pasta-Ulam problem having in mind the generalization provided by Fractional Calculus (FC). The study starts by addressing the classical formulation, based on the standard integer order differential calculus and evaluates the time and frequency responses. A first generalization to be investigated consists in the direct replacement of the springs by fractional elements of the dissipative type. It is observed that the responses settle rapidly and no relevant phenomena occur. A second approach consists of replacing the springs by a blend of energy extracting and energy inserting elements of symmetrical fractional order with amplitude modulated by quadratic terms. The numerical results reveal a response close to chaotic behaviour.
Resumo:
With progressing CMOS technology miniaturization, the leakage power consumption starts to dominate the dynamic power consumption. The recent technology trends have equipped the modern embedded processors with the several sleep states and reduced their overhead (energy/time) of the sleep transition. The dynamic voltage frequency scaling (DVFS) potential to save energy is diminishing due to efficient (low overhead) sleep states and increased static (leakage) power consumption. The state-of-the-art research on static power reduction at system level is based on assumptions that cannot easily be integrated into practical systems. We propose a novel enhanced race-to-halt approach (ERTH) to reduce the overall system energy consumption. The exhaustive simulations demonstrate the effectiveness of our approach showing an improvement of up to 8 % over an existing work.
Resumo:
Signal Processing, Vol. 86, nº 10
Resumo:
In the current context of serious climate changes, where the increase of the frequency of some extreme events occurrence can enhance the rate of periods prone to high intensity forest fires, the National Forest Authority often implements, in several Portuguese forest areas, a regular set of measures in order to control the amount of fuel mass availability (PNDFCI, 2008). In the present work we’ll present a preliminary analysis concerning the assessment of the consequences given by the implementation of prescribed fire measures to control the amount of fuel mass in soil recovery, in particular in terms of its water retention capacity, its organic matter content, pH and content of iron. This work is included in a larger study (Meira-Castro, 2009(a); Meira-Castro, 2009(b)). According to the established praxis on the data collection, embodied in multidimensional matrices of n columns (variables in analysis) by p lines (sampled areas at different depths), and also considering the quantitative data nature present in this study, we’ve chosen a methodological approach that considers the multivariate statistical analysis, in particular, the Principal Component Analysis (PCA ) (Góis, 2004). The experiments were carried out in a soil cover over a natural site of Andaluzitic schist, in Gramelas, Caminha, NW Portugal, who was able to maintain itself intact from prescribed burnings from four years and was submit to prescribed fire in March 2008. The soils samples were collected from five different plots at six different time periods. The methodological option that was adopted have allowed us to identify the most relevant relational structures inside the n variables, the p samples and in two sets at the same time (Garcia-Pereira, 1990). Consequently, and in addition to the traditional outputs produced from the PCA, we have analyzed the influence of both sampling depths and geomorphological environments in the behavior of all variables involved.
Resumo:
This paper describes the implementation of a distributed model predictive approach for automatic generation control. Performance results are discussed by comparing classical techniques (based on integral control) with model predictive control solutions (centralized and distributed) for different operational scenarios with two interconnected networks. These scenarios include variable load levels (ranging from a small to a large unbalance generated power to power consumption ratio) and simultaneously variable distance between the interconnected networks systems. For the two networks the paper also examines the impact of load variation in an island context (a network isolated from each other).
Resumo:
This paper extents the by now classic sensor fusion complementary filter (CF) design, involving two sensors, to the case where three sensors that provide measurements in different bands are available. This paper shows that the use of classical CF techniques to tackle a generic three sensors fusion problem, based solely on their frequency domain characteristics, leads to a minimal realization, stable, sub-optimal solution, denoted as Complementary Filters3 (CF3). Then, a new approach for the estimation problem at hand is used, based on optimal linear Kalman filtering techniques. Moreover, the solution is shown to preserve the complementary property, i.e. the sum of the three transfer functions of the respective sensors add up to one, both in continuous and discrete time domains. This new class of filters are denoted as Complementary Kalman Filters3 (CKF3). The attitude estimation of a mobile robot is addressed, based on data from a rate gyroscope, a digital compass, and odometry. The experimental results obtained are reported.
Resumo:
Risk Based Inspection (RBI) is a risk methodology used as the basis for prioritizing and managing the efforts for an inspection program allowing the allocation of resources to provide a higher level of coverage on physical assets with higher risk. The main goal of RBI is to increase equipment availability while improving or maintaining the accepted level of risk. This paper presents the concept of risk, risk analysis and RBI methodology and shows an approach to determine the optimal inspection frequency for physical assets based on the potential risk and mainly on the quantification of the probability of failure. It makes use of some assumptions in a structured decision making process. The proposed methodology allows an optimization of inspection intervals deciding when the first inspection must be performed as well as the subsequent intervals of inspection. A demonstrative example is also presented to illustrate the application of the proposed methodology.