985 resultados para FREE EMULSION POLYMERIZATION
Resumo:
A novel nitroxide-mediated polymerization (NMP) control agent; 1,1,3,3-tetramethyl-2,3-dihydro-2-azaphenalen-2-yloxyl (TMAO), was used in the free-radical polymerization of styrene. The conversion of styrene during NMP was studied using FT-Raman spectroscopy and the effectiveness of TMAO as a NMP control agent was assessed by GPC analysis. Fidelity of the TMAO-alkoxyamine end-group on the synthesized polymers was confirmed by GPC, UV-Vis and fluorescence spectroscopic analyses. Comparison to the well known NMP control agent, TEMPO was made. TMAO showed control of molecular weight approaching that of TEMPO. Attempts to improve the properties of TMAO as an NMP control agent by synthesizing an analogue with bulkier substituents around the nitroxide did not generate the target molecule but demonstrated some of the interesting chemistry of the azaphenalene ring system
Resumo:
The free radical polymerization of acrylonitrile (AN) initiated by Cu(I1) 4-anilino 3-pentene 2-one [Cu(II) ANIPO] Cu(II), 4-p-toluedeno 3-pentene 2-one [Cu(II) TPO], and Cu(I1) 4-p-nitroanilino 3-pentene 2-one [Cu(II) NAPO] was studied in benzene at 50 and 60°C and in carbon tetrachloride (CCld), dimethyl sulfoxide (DMSO), and methanol (MeOH) at 60°C. Although the polymerization proceeded in a heterogeneous phase, it followed the kinetics of a homogeneous process. The monomer exponents were 22 at two different temperatures and in different solvents. The square-root dependence of R, on initiator concentration and higher monomer exponents accounted for a 1:2 complex formation between the chelate and monomer. The complex formatign was shown by ultraviolet (UV) study. The activation energies, kinetics, and chain transfer constants were also evaluated.
Resumo:
The free radical polymerization of acrylonitrile (AN) initiated by Cu(II) 4-anilino 2-one [Cu(II) ANIPO] Cu(II), 4-p-toluedeno 3-pentene 2-one [Cu(II) TPO], and Cu(II) 4-p-nitroanilino 3-pentene 2-one [Cu(II) NAPO] was studied in benzene at 50 and 60°C and in carbon tetrachloride (CCl4), dimethyl sulfoxide (DMSO), and methanol (MeOH) at 60°C. Although the polymerization proceeded in a heterogeneous phase, it followed the kinetics of a homogeneous process. The monomer exponents were 2 at two different temperatures and in different solvents. The square-root dependence of Rp on initiator concentration and higher monomer exponents accounted for a 1:2 complex formation between the chelate and monomer. The complex formation was shown by ultraviolet (UV) study. The activation energies, kinetics, and chain transfer constants were also evaluated.
Resumo:
We have developed a novel strategy for the preparation of ion-bonded supramolecular star polymers by RAFT polymerization. An ion-bonded star supramolecule with six functional groups was prepared from a triphenylene derivative containing tertiary amino groups and trithiocarbonate carboxylic acid, and used as the RAFT agent in polymerizations of tert-butyl acrylate (tBA) and styrene (St). Molecular weights and structures of the polymers were characterized by H-1 NMR and GPC. The results show that the polymerization possesses the character of living free-radical polymerization and the ion-bonded supramolecular star polymers PSt, PtBA, and PSt-b-PtBA, with six well-defined arms, were successfully synthesized.
Resumo:
Living characteristics of facilely prepared Ziegler-Natta type catalyst system consisting of iron(III) 2-ethylhexanoate, triisobutylaluminum and diethyl phosphite have been found in the polymerization of 1,3-butadiene in hexane at 40 degrees C. The characteristics have been well demonstrated by: a first-order kinetics with respect to monomer conversion, a narrow molecular weight distribution (M-w/M-n = 1.48-1.52) of polybutadiene in the entire range of polymerization conversion and a good linearity between M-n and the yield of polymer. Feasible post-polymerization of 1,3-butadiene and block co-polymerization of 1,3-butadiene and isoprene further support the living natures of the catalyst bestowed with.
Resumo:
Hyperbranched polymers with numerous pendent norbornene functionalities have been synthesized via the radical polymerization of a novel asymmetrical divinyl monomer hearing a higher reactivity methacrylate group and it lower reactivity norbornene group. Mediated by a rapid reversible addition-fragmentation chain transfer (RAFT) equilibrium, the concentration of polymeric chain radicals is decreased, and thus the gelation did not occur until higher monomer conversions (ca. 90%). An increase in reaction temperature call also significantly promote the formation of the hyperbranched structure owing to the decreased stability of the intermediate radicals derived from the norbornene group, which was confirmed by a model copolymerization system of two single vinyl monomers with similar structures to the vinyl groups in the asymmetrical divinyl monomer. Furthermore, Tri-SEC and conventional Sin-SEC as well as H-1 NMR.
Resumo:
A series of novel neutral nickel complexes 4a-e bearing modified beta-ketoiminato ligands [(2,6-(Pr2C6H3)-Pr-i)N=C(R-1)CHC(2 '-R2C6H4)O]Ni(Ph)(PPh3) (4a, R-1 R-2 = H; 4b, R-1 = H, R-2 = Ph; 4c, R-1 = H, R-2 = Naphth; 4d, R-1 = CH3, R-2 = Ph; 4e, R-1 = CF3, R-2 Ph) have been synthesized and characterized. Molecular structures of 4b and 4e were further confirmed by X-ray crystallographic analysis. Activated with B(C6F5)(3), all the complexes are active for the polymerization of ethylene to branched polyethylenes. Ligand structure, i.e., substituents R-1 and R-2, greatly influences not only catalytic activity but also the molecular weight and branch content of the polyethylene produced. The phenyl-substituted complex 4b exhibits the highest activity of lip to 145 kg PE/mol(Ni)center dot h center dot atm under optimized conditions, which is about 10 times more than unsubstituted complex 4a (14.0 kg PE/mol(Ni center dot)h center dot atm). Highly branched polyethylene with 103 branches per 1000 carbon atoms has been prepared using catalyst 4e.
Resumo:
Hyperbranched vinyl polymers were prepared by reversible addition-fragmentation chain transfer ( RAFT) polymerization of a styrenic asymmetric divinyl monomer. This was achieved by using cumyl dithiobenzoate or S-dodecyl-S'-(alpha,alpha'-dimethyl-alpha ''-acetic acid) trithiocarbonate as the chain transfer agent, 1,1'-azobis(cyclohexanecarbonitrile) or thermal initiation as a source of radicals. Cross-linking was inhibited by a rapid RAFT-based equilibrium between active propagation chains and dormant species, and thus a hyperbranched polymer with a monomer conversion as high as 80% was obtained. The hyperbranched structure and properties of the resultant polymers were characterized by a combination of H-1-NMR spectroscopy and a triple detection size exclusion chromatography (TRI-SEC). The hyperbranched vinyl polymer has a broad molecular weight distributions and a low Mark-Houwink exponent alpha value compared with the linear counterpart.
Resumo:
The reversible addition-fragmentation chain transfer (RAFT) polymerization of acrylonitrile (AN) mediated by 2-cyanoprop-2-yl dithiobenzoate was first applied to synthesize polyacrylonitrile (PAN) with a high molecular weight up to 32,800 and a polydispersity index as low as 1.29. The key to success was ascribed to the optimization of the experimental conditions to increase the fragmentation reaction efficiency of the intermediate radical. In accordance with the atom transfer radical polymerization of AN, ethylene carbonate was also a better solvent candidate for providing higher controlled/living RAFT polymerization behaviors than dimethylformamide and dimethyl sulfoxide. The various experimental parameters, including the temperature, the molar ratio of dithiobenzoate to the initiator, the molar ratio of the monomer to dithiobenzoate, the monomer concentration, and the addition of the comonomer, were varied to improve the control of the molecular weight and polydispersity index. The molecular weights of PANS were validated by gel permeation chromatography along with a universal calibration procedure and intrinsic viscosity measurements. H-1 NMR analysis confirmed the high chain-end functionality of the resultant polymers.
Resumo:
Reversible addition-fragmentation chain transfer polymerization has been successfully applied to polymerize acrylonitrile with dibenzyl trithiocarbonate as the chain-transfer agent. The key to success is ascribed to the improvement of the interchange frequency between dormant and active species through the reduction of the activation energy for the fragmentation of the intermediate. The influence of several experimental parameters, such as the molar ratio of the chain-transfer agent to the initiator [azobis(isobutyronitrile)], the molar ratio of the monomer to the chain-transfer agent, and the monomer concentration, on the polymerization kinetics and the molecular weight as well as the polydispersity has been investigated in detail. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and H-1 NMR analyses have confirmed the chain-end functionality of the resultant polymer.
Resumo:
α-Tocopheryl succinate (α-TOS) is a well-known mitochondrially targeted anticancer compound, however, it is highly hydrophobic and toxic. In order to improve its activity and reduce its toxicity, new surfactant-free biologically active nanoparticles (NP) were synthesized. A methacrylic derivative of α-TOS (MTOS) was prepared and incorporated in amphiphilic pseudoblock copolymers when copolymerized with N-vinylpyrrolidone (VP) by free radical polymerization (poly(VP-co-MTOS)). The selected poly(VP-co-MTOS) copolymers formed surfactant-free NP by nanoprecipitation with sizes between 96 and 220 nm and narrow size distribution, and the in vitro biological activity was tested. In order to understand the structure-activity relationship three other methacrylic monomers were synthesized and characterized: MVE did not have the succinate group, SPHY did not have the chromanol ring, and MPHY did not have both the succinate group and the chromanol ring.
Resumo:
The polymerization of the intercalated aniline ions was studied in three different clays, Swy2-montmorillonite (MMT), synthetic mica-montmorillonite (Synl) and pillarized Swy2-montmorillonite (PILC). PANI is formed between the MMT and Syn1 clay layers, being confirmed by the shift of d(001) peak in the X-ray pattern. X-ray Absorption near to Si K edge (Si K XANES) data show that the structures of clays are preserved after the polymerization process and in addition to the SEM images show that morphologies of the clays are maintained after polymerization, indicating no polymerization in their external surface. UV-vis-NIR and resonance Raman data display that the PANI formed in Syn1 galleries has higher amount of phenazinic rings than observed for PANI intercalated in montmorillonite (MMT) clay. No polymer formation was detected in the PILC. N K XANES and EPR spectroscopies show the presence of azo and radical nitrogen in intercalated PAN! chains. Hence, the results are rationalized considering the structural differences between the clays for understanding the role of the anilinium polymerization within the clays galleries. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Bacterial cellulose/polymethacrylate nanocomposites have received attention in numerous areas of study and in a variety of applications. The attractive properties of methacrylate polymers and bacterial cellulose, BC, allow the synthesis of new nanocomposites with distinct characteristics. In this study, BC/poly(glycidylmethacrylate) (BC/PGMA) and BC/poly(ethyleneglycol)methacrylate (BC/PPEGMA) nanocomposites were prepared through in situ free radical polymerization of GMA and PEGMA, respectively. Ammonium persulphate (APS) was used as an initiator and N,N’methylenebisacrilamide (MBA) was used as a crosslinker in BC/PGMA. Chemical composition, morphology, thermal stability, water absorption, mechanic and surface properties were determined through specific characterization techniques. The optimal polymerization was obtained at (1:2) for BC/PGMA, (1:2:0.2) ratio for BC/GMA/MBA and (1:20) for BC/PPEGMA, with 0.5% of initiator at 60 ºC during 6 h. A maximum of 67% and 87% of incorporation percentage was obtained, respectively, for the nanocomposites BC/PGMA/MBA and BC/PPEGMA. BC/PGMA nanocomposites exhibited an increase of roughness and compactation of the three-dimensional structure, an improvement in the thermal and mechanical properties, and a decrease in their swelling ability and crystallinity. On the other hand, BC/PPEGMA showed a decrease of stiffness of three-dimensional structure, improvement in thermal and mechanical properties, an increase in their swelling ability and a decrease the crystallinity. Both BC/polymethacrylate nanocomposites exhibited a basic surface character. The acid treatment showed to be a suitable strategy to modifiy BC/PGMA nanocomposites through epoxide ring-opening reaction mechanism. Nanocomposites became more compact, smooth and with more water retention ability. A decrease in the thermal and mechanical proprieties was observed. The new nanocomposites acquired properties useful to biomedical applications or/and removal of heavy metals due to the presence of functional groups.
Resumo:
Im Rahmen dieser Arbeit wurden neue Ansätze für das Konzept der kapselbasierten Selbstheilungsmaterialien untersucht. Die Verkapselung von Selbstheilungsreagenzien in funktionellen Nanokapseln wurde dabei mittels drei verschiedener Herstellungsmethoden in Miniemulsion durchgeführt. Zunächst wurde die Synthese von Kern-Schale-Partikeln mit verkapselten Monomeren für die Ringöffnungs-Metathese-Polymerisation über freie radikalische Polymerisation in Miniemulsionstropfen beschrieben. Durch orthogonale Reaktionen wurden dabei verschiedene chemische Funktionalisierungen in die Schale eingebracht. Die Rolle des Tensides, das Verhältnis von Kernmaterial zu Monomer sowie die Variation der Lösungsmittelqualität hatte dabei einen Einfluss auf die Struktur der Kolloide. Die Heilungsreagenzien blieben auch nach der Verkapselung aktiv, was durch erfolgreich durchgeführte Selbstheilungsexperimente gezeigt werden konnte. Im zweiten Abschnitt wurde die Synthese von Silica-Nanocontainern für Selbstheilungsmaterialien über Hydrolyse und Polykondensation von Alkoxysilanen an der Grenzfläche der Miniemulsionstropfen beschrieben. Dieser Ansatz ermöglichte die effiziente Verkapselung sowohl von Monomeren als auch von Lösungen der Katalysatoren für die Metathese-Polymerisation in einem Einstufenprozess. Die Größe der Kapseln, die Dicke der Schale und der Feststoffgehalt der Dispersionen konnte dabei in einem weiten Bereich variiert werden. Anhand von erfolgreich durchgeführten Selbstheilungsreaktionen, die über Thermogravimetrie und 13C-NMR-Spektroskopie verfolgt wurden, konnte gezeigt werden, dass die Selbstheilungsreagenzien nach der Verkapselung aktiv blieben. Das dritte Konzept behandelte die Herstellung von polymeren Nanokapseln mittels Emulsions-Lösungsmittelverdampfungstechnik, welche eine milde Methode zur Verkapselung darstellt. Es wurde eine allgemeine und einfache Vorgehensweise beschrieben, in der Selbstheilungsreagenzien in polymeren Nanokapseln unter Verwendung von kommerziell erhältlichen Polymeren als Schalenmaterial verkapselt wurden. Zudem wurden Copolymere aus Styrol und verschiedenen hydrophilen Monomeren über freie radikalische Polymerisation sowie über polymeranaloge Reaktionen hergestellt. Diese statistischen Copolymere waren ebenso wie Blockcopolymere zur Herstellung von wohldefinierten Kern-Schale-Nanopartikeln mittels Emulsions-Lösungsmittelverdampfungsprozess geeignet. rnrnDes Weiteren wurde ein neues Konzept für die Synthese von pH-responsiven Nanokapseln aus tensidfreien Emulsionen unter Verwendung von Copolymeren aus Styrol und Trimethylsilylmethacrylat beschrieben. Der vorgeschlagene synthetische Ansatz ermöglicht dabei die erste Synthese von Nanokapseln über den Emulsions-Lösungsmittelverdampfungsprozess in Abwesenheit eines Tensides. Eine vollständig reversible Aggregation ermöglichte eine leichte Trennung der Nanokapseln von der kontinuierlichen Phase sowie eine Erhöhung der Konzentration der Nanokapseldispersionen auf das bis zu fünffache. Darüber hinaus war es möglich, Selbstheilungsreagenzien in stabilem Zustand zu verkapseln. Abschließend wurde die elektrochemische Abscheidung von mit Monomer gefüllten Nanokapseln in eine Zinkschicht zur Anwendung im Korrosionsschutz behandelt.
Resumo:
In dieser Arbeit wird die Synthese von Polymerkolloiden mit unterschiedlichen Formen und Funktionalitäten sowie deren Verwendung zur Herstellung kolloidaler Überstrukturen beschrieben. Über emulgatorfreie Emulsionspolymerisation (SFEP) erzeugte monodisperse sphärische Kolloide dienen als Bausteine von Polymeropalen, die durch die Selbstorganisation dieser Kolloide über vertikale Kristallisation (mit Hilfe einer Ziehmaschine) oder horizontale Kristallisation (durch Aufschleudern oder Aufpipettieren) entstehen. Durch die Kontrolle der Kugelgröße über die Parameter der Emulsionspolymerisation sowie die Einstellung der Schichtdicke der Kolloidkristalle über die Anpassung der Kristallisationsparameter ist die Erzeugung von qualitativ hochwertigen Opalen mit definierter Reflektionswellenlänge möglich. Darüber hinaus kann die chemische und thermische Beständigkeit der Opale durch den Einbau von Vernetzern oder vernetzbaren Gruppen in die Polymere erhöht werden. Die Opalfilme können als wellenlängenselektive Reflektoren in auf Fluoreszenzkonzentratoren basierenden Solarzellensystemen eingesetzt werden, um Lichtverluste in diesen Systemen zu reduzieren. Sie können auch als Template für die Herstellung invertierter Opale aus verschiedenen anorganischen Oxiden (TiO2, Al2O3, ZnO) dienen. Über einen CVD-Prozess erzeugte ZnO-Replika besitzen dabei den Vorteil, dass sie nicht nur eine hohe optische Qualität sondern auch eine elektrische Leitfähigkeit aufweisen. Dies ermöglicht sowohl deren Einsatz als Zwischenreflektor in Tandemsolarzellen als auch die Herstellung hierarchischer Strukturen über die Elektroabscheidung von Nanokristallen. In einem weiteren Teil der Arbeit wird die Herstellung funktioneller formanisotroper Partikel behandelt. Durch die Entmischung von mit Monomer gequollenen vernetzten Partikeln in einer Saatpolymerisation sind mehrere Mikrometer große Kolloide zugänglich, die aus zwei interpenetrierenden Halbkugeln aus gleichen oder verschiedenen Polymeren bestehen. Dadurch sind unter anderem Glycidyl-, Alkin- und Carbonsäuregruppen in die eine oder die andere Halbkugel integrierbar. Diese funktionellen Gruppen erlauben die Markierung bestimmter Partikelhälften mit Farbstoffen, die Beschichtung von Partikelbereichen mit anorganischen Oxiden wie SiO2 sowie die Erzeugung amphiphiler formanisotroper Partikel, die sich an Grenzflächen ausrichten lassen. Das Synthesekonzept kann - ausgehend von mittels SFEP erzeugten stark vernetzten PMMA-Partikeln - auch auf kleine Kolloide mit Größen von mehreren hundert Nanometern übertragen werden.