924 resultados para FRACTAL MULTISCALE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The multiscale finite volume (MsFV) method has been developed to efficiently solve large heterogeneous problems (elliptic or parabolic); it is usually employed for pressure equations and delivers conservative flux fields to be used in transport problems. The method essentially relies on the hypothesis that the (fine-scale) problem can be reasonably described by a set of local solutions coupled by a conservative global (coarse-scale) problem. In most cases, the boundary conditions assigned for the local problems are satisfactory and the approximate conservative fluxes provided by the method are accurate. In numerically challenging cases, however, a more accurate localization is required to obtain a good approximation of the fine-scale solution. In this paper we develop a procedure to iteratively improve the boundary conditions of the local problems. The algorithm relies on the data structure of the MsFV method and employs a Krylov-subspace projection method to obtain an unconditionally stable scheme and accelerate convergence. Two variants are considered: in the first, only the MsFV operator is used; in the second, the MsFV operator is combined in a two-step method with an operator derived from the problem solved to construct the conservative flux field. The resulting iterative MsFV algorithms allow arbitrary reduction of the solution error without compromising the construction of a conservative flux field, which is guaranteed at any iteration. Since it converges to the exact solution, the method can be regarded as a linear solver. In this context, the schemes proposed here can be viewed as preconditioned versions of the Generalized Minimal Residual method (GMRES), with a very peculiar characteristic that the residual on the coarse grid is zero at any iteration (thus conservative fluxes can be obtained).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

No passado, a Matemática esteve, em grande parte, preocupada com conjuntos e funções que podem ser estudados através dos métodos clássicos de cálculo1. Por exemplo, na geometria, Havia o hábito de descrever os objectos através de formas regulares: rectas, circunferências, cones etc. Mas, será que uma nuvem é formada por esferas, uma montanha por cones e continentes por circunferências? Existem alguns objectos na natureza, nas ciências em geral e na matemática, em particular (conjuntos, funções), que não são suficientemente "lisos" e que tendiam a ser ignorados e rotulados como “patológicos” . Tais objectos foram considerados como curiosidades, e assim, estudados e analisados por alguns investigadores ao longo dos tempos. Porém, em 1960, Benoit B. Mandelbrot2, trouxe essa matéria à agenda matemática da actualidade, apresentando uma fundamentação coerente do que seriam essas "não-formas". Refazendo alguns estudos nessa área e conhecendo ideias de outros autores apresentou estudos sobre fractais criando assim a teoria dos fractais ou a geometria fractal. Os fractais caracterizam-se por terem uma aparência complexa e confusa, em certos casos, mas quando olhados matematicamente, sua análise denota figuras que apresentam regularidades e comportamentos curiosos, como o de se assemelharem a elas mesmas quando observadas a diferentes escalas, por exemplo. A geometria fractal é portanto o ramo da Matemática que estuda as propriedades dos fractais. Descreve muitas situações que não podem ser explicadas facilmente pela Geometria Euclidiana. A geometria fractal descreve taambém como os fractais podem ser aplicados na ciência, tecnologia, arte, etc., sobretudo com recurso computadores. A geometria fractal ainda não fez a sua entrada nos programas dematemática no sistema educativo cabo-verdiano, sendo portanto, pouco conhecida nesse meio. Assim escolhemos essa geometria como tema do nosso trabalho, cujo objectivo geral é divulgar o mundo dos fractais e as suas aplicações, na educação. Aprofundar os conhecimentos sobre a geometria fractal e suas aplicações práticas e no ensino, integrar os conhecimentos de Álgebra Linear, Geometria e Topologia adquiridos no curso e aplicar os fractais ao estudo das sucessões (progressões geométricas) são os objectivos específicos. A partir destes objectivos surgiram as nossas questões de investigação, que tentamos responder ao longo do estudo: 1. Como se fundamenta a geometria fractal? 2. Quais são as principais aplicações? 3. Como aplicar os fractais no ensino secundário (sucessões), de modo a tornar o ensino de matemática mais interessante e motivador? Tais são as questões para as quais procuramos uma resposta ao longo do desenvolvimento do projecto.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résumé Les changements climatiques du Quaternaire ont eu une influence majeure sur la distribution et l'évolution des biota septentrionaux. Les Alpes offrent un cadre spatio-temporel bien étudié pour comprendre la réactivité de la flore et le potentiel d'adaptation d'une espèce végétale face aux changements climatiques. Certaines hypothèses postulent une diversification des espèces en raison de la disparition complète de la flore des Alpes et d'un isolement important des espèces dans des refuges méridionaux durant les dernières glaciations (Tabula Rasa). Une autre hypothèse stipule le maintien de poches de résistance pour la végétation au coeur des Alpes (Nunataks). Comme de nombreuses espèces végétales présentant un grand succès écologique semblent avoir réagi aux glaciations par la multiplication de leur génome (autopolyploïdie), leur étude en milieu naturel devrait permettre de comprendre les avantages inhérents à la polyploïdie. Biscutella laevigata est un modèle emblématique de biogéographie historique, diverses études ayant montré que des populations diploïdes sont actuellement isolées dans les zones restées déglacées durant le dernier maximum glaciaire, alors que des tétraploïdes ont recolonisé l'ensemble des zones alpines mises à nu par le retrait des glaciers. Si le contexte périglaciaire semble avoir favorisé ce jeune complexe autopolyploïde, les circonstances et les avantages de cette mutation génomique ne sont pas encore clairs. Y a-t-il eu de multiples événements de polyploïdisation ? Dans quelle mesure affecte(nt)il(s) la diversité génétique et le potentiel évolutif des polyploïdes ? Les polyploïdes ont-ils une grande flexibilité génomique, favorisant une radiation adaptative, ou doivent-ils leur succès à une grande plasticité écologique ? Cette étude aborde ces questions à différentes échelles spatiales et temporelles. L'échelle régionale des Alpes occidentales permet d'aborder les facteurs distaux (aspects historiques), alors que l'échelle locale cherche à appréhender les facteurs proximaux (mécanismes évolutifs). Dans les Alpes occidentales, des populations ont été densément échantillonnées et étudiées grâce à (1) leur cytotype, (2) leur appartenance taxonomique, (3) leur habitat et (4) des marqueurs moléculaires de l'ADN chloroplastique, en vue d'établir leurs affinités évolutives. Á l'échelle locale, deux systèmes de population ont été étudiés : l'un où les populations persistent en périphérie de l'aire de distribution et l'autre au niveau du front actif de colonisation, en marge altitudinale. Les résultats à l'échelle des Alpes occidentales révèlent les sites d'intérêt (refuges glaciaires, principales barrières et voies de recolonisation) pour une espèce représentative des pelouses alpines, ainsi que pour la biodiversité régionale. Les Préalpes ont joué un rôle important dans le maintien de populations à proximité immédiate des Alpes centrales et dans l'évolution du taxon, voire de la végétation. Il est aussi démontré que l'époque glaciaire a favorisé l'autopolyploïdie polytopique et la recolonisation des Alpes occidentales par des lignées distinctes qui s'hybrident au centre des Alpes, influençant fortement leur diversité génétique et leur potentiel évolutif. L'analyse de populations locales en situations contrastées à l'aide de marqueurs AFLP montre qu'au sein d'une lignée présentant une grande expansion, la diversité génétique est façonnée par des forces évolutives différentes selon le contexte écologique et historique. Les populations persistant présentent une dispersion des gènes restreinte, engendrant une diversité génétique assez faible, mais semblent adaptées aux conditions locales de l'environnement. À l'inverse, les populations colonisant la marge altitudinale sont influencées par les effets de fondation conjugués à une importante dispersion des gènes et, si ces processus impliquent une grande diversité génétique, ils engendrent une répartition aléatoire des génotypes dans l'environnement. Les autopolyploïdes apparaissent ainsi comme capables de persister face aux changements climatiques grâce à certaines facultés d'adaptation locale et de grandes capacités à maintenir une importante diversité génétique lors de la recolonisation post-glaciaire. Summary The extreme climate changes of the Quaternary have had a major influence on species distribution and evolution. The European Alps offer a great framework to investigate flora reactivity and the adaptive potential of species under changing climate. Some hypotheses postulate diversification due to vegetation removal and important isolation in southern refugia (Tabula Rasa), while others explain phylogeographic patterns by the survival of species in favourable Nunataks within the Alps. Since numerous species have successfully reacted to past climate changes by genome multiplication (autopolyploidy), studies of such taxa in natural conditions is likely to explain the ecological success and the advantages of autopolyploidy. Early cytogeographical surveys of Biscutella laevigata have shed light on the links between autopolyploidy and glaciations by indicating that diploids are now spatially isolated in never-glaciated areas, while autotetraploids have recolonised the zones covered by glaciers- during the last glacial maximum. A periglacial context apparently favoured this young autopolyploid complex but the circumstances and the advantages of this genomic mutation remain unclear. What is the glacial history of the B. laevigata autopolyploid complex? Are there multiple events of polyploidisation? To what extent do they affect the genetic diversity and the evolutionary potential of polyploids? Is recolonisation associated with adaptive processes? How does long-term persistence affect genetic diversity? The present study addresses these questions at different spatiotemporal scales. A regional survey at the Western Alps-scale tackles distal factors (evolutionary history), while local-scale studies explore proximal factors (evolutionary mechanisms). In the Western Alps, populations have been densely sampled and studied from the (1) cytotypic, (2) morphotaxonomic, (3) habitat point of views, as well as (4) plastid DNA molecular markers, in order to infer their relationships and establish the maternal lineages phylogeography. At the local scale, populations persisting at the rear edge and populations recolonising the attitudinal margin at the leading edge have been studied by AFLPs to show how genetic diversity is shaped by different evolutionary forces across the species range. The results at the regional scale document the glacial history of a widespread species, representative of alpine meadows, in a regional area of main interest (glacial refugia, main barriers and recolonisation routes) and points out to sites of interest for regional biodiversity. The external Alps have played a major role in the maintenance of populations near the central Alps during the Last Glacial Maximum and influenced the evolution of the species, and of vegetation. Polytopic autopolyploidy in different biogeographic districts is also demonstrated. The species has had an important and rapid radiation because recolonisation took place from different refugia. The subsequent recolonisation of the Western Alps was achieved by independent lineages that are presently admixing in the central Alps. The role of the Pennic summit line is underlined as a great barrier that was permeable only through certain favourable high-altitude passes. The central Alps are thus viewed as an important crossroad where genomes with different evolutionary histories are meeting and admixing. The AFLP analysis and comparison of local populations growing in contrasted ecological and historical situations indicate that populations persisting in the external Alps present restricted gene dispersal and low genetic diversity but seem in equilibrium with their environment. On the contrary, populations colonising the attitudinal margin are mainly influenced by founder effects together with great gene dispersal and genotypes have a nearly random distribution, suggesting that recolonisation is not associated with adaptive processes. Autopolyploids that locally persist against climate changes thus seem to present adaptive ability, while those that actively recolonise the Alps are successful because of their great capacity to maintain a high genetic diversity against founder effects during recolonisation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A tree frog (Hyla arborea L., 1758) metapopulation in western Switzerland was studied during spring 2001. All potential calling ponds in an area of 350 km(2) were searched for tree frog calling males. Twenty-nine out of 111 ponds sheltered between 1 and 250 callers. Most ponds were occupied by less than 12 males. Pond parameters were measured at three different levels using field analysis and a Geographical Information System (GIS). The first level was water chemistry and pond-associated measures. The second level was the surrounding land use in a 30 m buffer around the pond. The third level consisted of landscape indices on a broader scale (up to 2 km). Logistic regression was applied to identify parameters that can predict the presence of calling males in a pond. Response variable was the presence or absence of callers. Four significant parameters allowed us to explain about 40% of the total deviance of the observed occupational pattern. Urbanization around the pond had a highly negative impact on the probability of presence of calling males. Hours of direct sunlight on the pond was positively correlated with callers. Higher water conductivity was associated with a lesser probability of species presence. Finally, the further the closest two-lane road, the higher the probability of callers presence. Our results show that presence or absence of callers is influenced by factors acting at various geographical scales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dentre as ferramentas usadas para descrever a estrutura ramificada ou a superfície rugosa e distorcida de ácidos húmicos (AH), a geometria fractal aparece como uma das mais adequadas para explicar a conformação de partículas húmicas (agregados moleculares). Do ponto de vista experimental, a dimensão fractal (D) de sistemas naturais pode ser determinada a partir do monitoramento da luz transmitida, não espalhada e não absorvida (turbidimetria 'τ'). A presença de fractais implica que o sistema pode ser decomposto em partes, em que cada uma, subseqüentemente, é cópia do todo. A determinação do valor 'D' dessas partículas foi conseguida pela utilização de turbidimetria, em que suspensões de AH-comercial e de AH-Espodossolo foram analisadas por espectrofotometria UV-Vis. O fundamento matemático utilizado foi a lei de potência τ ∝ λβ, em que β < 3 indica a presença de fractal de massa (Dm); 3 < β < 4 indica fractal de superfície (Ds), e β ≅ 3 indica não-fractal (NF). A declividade das retas (β) por meio do gráfico (logτ vs logλ) permitiu a obtenção de 'D'. Segundo os resultados, partículas de AH em suspensões aquosas diluídas formam estruturas fractais, cuja geometria pode ser caracterizada por meio de turbidimetria. Entretanto, a faixa de comprimento de onda usada (400 a 550 nm) ainda é pequena para se afirmar sobre a natureza fractal de AH e determinar suas dimensões fractais com precisão.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabalho teve por objetivo explorar a aplicabilidade da teoria de fractais no estudo da variabilidade espacial em agregação de solo. A geometria de fractais tem sido proposta como um modelo para a distribuição de tamanho de partículas. A distribuição do tamanho de agregados do solo, expressos em termos de massa, é apresentada. Os parâmetros do modelo, tais como: a dimensão fractal D, medida representativa da fragmentação do solo (quanto maior seu valor, maior a fragmentação), e o tamanho do maior agregado R L foram definidos como ferramentas descritivas para a agregação do solo. Os agregados foram coletados em uma profundidade de 0-10 cm de um Latossolo Vermelho distrófico típico álico textura argilosa, em Angatuba, São Paulo. Uma grade regular de 100 x 100 m foi usada e a amostragem realizada em 76 pontos nos quais se determinou a distribuição de agregados por via úmida, usando água, álcool e benzeno como pré-tratamentos. Pelo exame de semivariogramas, constatou-se a ocorrência de dependência espacial. A krigagem ordinária foi usada como interpolador e mapas de contorno mostraram-se de grande utilidade na descrição da variabilidade espacial de agregação do solo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Baseado nos conceitos da geometria fractal e nas leis de Laplace e de Poiseuille, foi criado um modelo geral para estimar a condutividade hidráulica de solos não saturados, utilizando a curva de retenção da água no solo, conforme representada por um modelo em potência. Considerando o fato de que este novo modelo da condutividade hidráulica introduz um parâmetro de interpolação ainda desconhecido, e que, por sua vez, depende das propriedades dos solos, a validação do modelo foi realizada, utilizando dois valores-limite fisicamente representativos. Para a aplicação do modelo, os parâmetros de forma da curva de retenção da água no solo foram escolhidos de maneira a se obter o modelo de van Genuchten. Com a finalidade de obter fórmulas algébricas da condutividade hidráulica, foram impostas relações entre seus parâmetros de forma. A comparação dos resultados obtidos com o modelo da condutividade e a curva experimental da condutividade dos dois solos, Latossolo Vermelho-Amarelo e Argissolo Amarelo, permitiu concluir que o modelo proposto é simples em sua utilização e é capaz de predizer satisfatoriamente a condutividade hidráulica dos solos não saturados.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Motor changes in major depression (MD) may represent potential markers of treatment response. Physiological rhythms (heart rate/gait cycle/hand movements) have been recently shown to be neither random nor regular but to display a fractal temporal organisation, possibly reflecting a unique central "internal clock" control. Sleep and mood circadian rhythm modifications observed in MD also suggest a role for this "internal clock". We set out to examine the fractal pattern of motor activity in MD. METHODS: Ten depressed patients (46±20 years) and ten age- and gender-matched healthy controls (48±21 years) underwent a 6-h ambulatory monitoring of spontaneous hand activity with a validated wireless device. Fractal scaling exponent (α) was analysed. An α value close to 1 means the pattern is fractal. RESULTS: Healthy controls displayed a fractal pattern of spontaneous motor hand activity (α: 1.0±0.1), whereas depressed patients showed an alteration of that pattern (α:1.2±0.15, p<0.01), towards a smoother organisation. CONCLUSION: The alteration of fractal pattern of hand activity by depression further supports the role of a central internal clock in the temporal organisation of movements. This novel way of studying motor changes in depression might have an important role in the detection of endophenotypes and potential predictors of treatment response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fractal mathematics has been used to characterize water and solute transport in porous media and also to characterize and simulate porous media properties. The objective of this study was to evaluate the correlation between the soil infiltration parameters sorptivity (S) and time exponent (n) and the parameters dimension (D) and the Hurst exponent (H). For this purpose, ten horizontal columns with pure (either clay or loam) and heterogeneous porous media (clay and loam distributed in layers in the column) were simulated following the distribution of a deterministic Cantor Bar with fractal dimension H" 0.63. Horizontal water infiltration experiments were then simulated using Hydrus 2D software. The sorptivity (S) and time exponent (n) parameters of the Philip equation were estimated for each simulation, using the nonlinear regression procedure of the statistical software package SAS®. Sorptivity increased in the columns with the loam content, which was attributed to the relation of S with the capillary radius. The time exponent estimated by nonlinear regression was found to be less than the traditional value of 0.5. The fractal dimension estimated from the Hurst exponent was 17.5 % lower than the fractal dimension of the Cantor Bar used to generate the columns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The multiscale finite-volume (MSFV) method is designed to reduce the computational cost of elliptic and parabolic problems with highly heterogeneous anisotropic coefficients. The reduction is achieved by splitting the original global problem into a set of local problems (with approximate local boundary conditions) coupled by a coarse global problem. It has been shown recently that the numerical errors in MSFV results can be reduced systematically with an iterative procedure that provides a conservative velocity field after any iteration step. The iterative MSFV (i-MSFV) method can be obtained with an improved (smoothed) multiscale solution to enhance the localization conditions, with a Krylov subspace method [e.g., the generalized-minimal-residual (GMRES) algorithm] preconditioned by the MSFV system, or with a combination of both. In a multiphase-flow system, a balance between accuracy and computational efficiency should be achieved by finding a minimum number of i-MSFV iterations (on pressure), which is necessary to achieve the desired accuracy in the saturation solution. In this work, we extend the i-MSFV method to sequential implicit simulation of time-dependent problems. To control the error of the coupled saturation/pressure system, we analyze the transport error caused by an approximate velocity field. We then propose an error-control strategy on the basis of the residual of the pressure equation. At the beginning of simulation, the pressure solution is iterated until a specified accuracy is achieved. To minimize the number of iterations in a multiphase-flow problem, the solution at the previous timestep is used to improve the localization assumption at the current timestep. Additional iterations are used only when the residual becomes larger than a specified threshold value. Numerical results show that only a few iterations on average are necessary to improve the MSFV results significantly, even for very challenging problems. Therefore, the proposed adaptive strategy yields efficient and accurate simulation of multiphase flow in heterogeneous porous media.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Real-world images are complex objects, difficult to describe but at the same time possessing a high degree of redundancy. A very recent study [1] on the statistical properties of natural images reveals that natural images can be viewed through different partitions which are essentially fractal in nature. One particular fractal component, related to the most singular (sharpest) transitions in the image, seems to be highly informative about the whole scene. In this paper we will show how to decompose the image into their fractal components.We will see that the most singular component is related to (but not coincident with) the edges of the objects present in the scenes. We will propose a new, simple method to reconstruct the image with information contained in that most informative component.We will see that the quality of the reconstruction is strongly dependent on the capability to extract the relevant edges in the determination of the most singular set.We will discuss the results from the perspective of coding, proposing this method as a starting point for future developments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Les instabilités engendrées par des gradients de densité interviennent dans une variété d'écoulements. Un exemple est celui de la séquestration géologique du dioxyde de carbone en milieux poreux. Ce gaz est injecté à haute pression dans des aquifères salines et profondes. La différence de densité entre la saumure saturée en CO2 dissous et la saumure environnante induit des courants favorables qui le transportent vers les couches géologiques profondes. Les gradients de densité peuvent aussi être la cause du transport indésirable de matières toxiques, ce qui peut éventuellement conduire à la pollution des sols et des eaux. La gamme d'échelles intervenant dans ce type de phénomènes est très large. Elle s'étend de l'échelle poreuse où les phénomènes de croissance des instabilités s'opèrent, jusqu'à l'échelle des aquifères à laquelle interviennent les phénomènes à temps long. Une reproduction fiable de la physique par la simulation numérique demeure donc un défi en raison du caractère multi-échelles aussi bien au niveau spatial et temporel de ces phénomènes. Il requiert donc le développement d'algorithmes performants et l'utilisation d'outils de calculs modernes. En conjugaison avec les méthodes de résolution itératives, les méthodes multi-échelles permettent de résoudre les grands systèmes d'équations algébriques de manière efficace. Ces méthodes ont été introduites comme méthodes d'upscaling et de downscaling pour la simulation d'écoulements en milieux poreux afin de traiter de fortes hétérogénéités du champ de perméabilité. Le principe repose sur l'utilisation parallèle de deux maillages, le premier est choisi en fonction de la résolution du champ de perméabilité (grille fine), alors que le second (grille grossière) est utilisé pour approximer le problème fin à moindre coût. La qualité de la solution multi-échelles peut être améliorée de manière itérative pour empêcher des erreurs trop importantes si le champ de perméabilité est complexe. Les méthodes adaptatives qui restreignent les procédures de mise à jour aux régions à forts gradients permettent de limiter les coûts de calculs additionnels. Dans le cas d'instabilités induites par des gradients de densité, l'échelle des phénomènes varie au cours du temps. En conséquence, des méthodes multi-échelles adaptatives sont requises pour tenir compte de cette dynamique. L'objectif de cette thèse est de développer des algorithmes multi-échelles adaptatifs et efficaces pour la simulation des instabilités induites par des gradients de densité. Pour cela, nous nous basons sur la méthode des volumes finis multi-échelles (MsFV) qui offre l'avantage de résoudre les phénomènes de transport tout en conservant la masse de manière exacte. Dans la première partie, nous pouvons démontrer que les approximations de la méthode MsFV engendrent des phénomènes de digitation non-physiques dont la suppression requiert des opérations de correction itératives. Les coûts de calculs additionnels de ces opérations peuvent toutefois être compensés par des méthodes adaptatives. Nous proposons aussi l'utilisation de la méthode MsFV comme méthode de downscaling: la grille grossière étant utilisée dans les zones où l'écoulement est relativement homogène alors que la grille plus fine est utilisée pour résoudre les forts gradients. Dans la seconde partie, la méthode multi-échelle est étendue à un nombre arbitraire de niveaux. Nous prouvons que la méthode généralisée est performante pour la résolution de grands systèmes d'équations algébriques. Dans la dernière partie, nous focalisons notre étude sur les échelles qui déterminent l'évolution des instabilités engendrées par des gradients de densité. L'identification de la structure locale ainsi que globale de l'écoulement permet de procéder à un upscaling des instabilités à temps long alors que les structures à petite échelle sont conservées lors du déclenchement de l'instabilité. Les résultats présentés dans ce travail permettent d'étendre les connaissances des méthodes MsFV et offrent des formulations multi-échelles efficaces pour la simulation des instabilités engendrées par des gradients de densité. - Density-driven instabilities in porous media are of interest for a wide range of applications, for instance, for geological sequestration of CO2, during which CO2 is injected at high pressure into deep saline aquifers. Due to the density difference between the C02-saturated brine and the surrounding brine, a downward migration of CO2 into deeper regions, where the risk of leakage is reduced, takes place. Similarly, undesired spontaneous mobilization of potentially hazardous substances that might endanger groundwater quality can be triggered by density differences. Over the last years, these effects have been investigated with the help of numerical groundwater models. Major challenges in simulating density-driven instabilities arise from the different scales of interest involved, i.e., the scale at which instabilities are triggered and the aquifer scale over which long-term processes take place. An accurate numerical reproduction is possible, only if the finest scale is captured. For large aquifers, this leads to problems with a large number of unknowns. Advanced numerical methods are required to efficiently solve these problems with today's available computational resources. Beside efficient iterative solvers, multiscale methods are available to solve large numerical systems. Originally, multiscale methods have been developed as upscaling-downscaling techniques to resolve strong permeability contrasts. In this case, two static grids are used: one is chosen with respect to the resolution of the permeability field (fine grid); the other (coarse grid) is used to approximate the fine-scale problem at low computational costs. The quality of the multiscale solution can be iteratively improved to avoid large errors in case of complex permeability structures. Adaptive formulations, which restrict the iterative update to domains with large gradients, enable limiting the additional computational costs of the iterations. In case of density-driven instabilities, additional spatial scales appear which change with time. Flexible adaptive methods are required to account for these emerging dynamic scales. The objective of this work is to develop an adaptive multiscale formulation for the efficient and accurate simulation of density-driven instabilities. We consider the Multiscale Finite-Volume (MsFV) method, which is well suited for simulations including the solution of transport problems as it guarantees a conservative velocity field. In the first part of this thesis, we investigate the applicability of the standard MsFV method to density- driven flow problems. We demonstrate that approximations in MsFV may trigger unphysical fingers and iterative corrections are necessary. Adaptive formulations (e.g., limiting a refined solution to domains with large concentration gradients where fingers form) can be used to balance the extra costs. We also propose to use the MsFV method as downscaling technique: the coarse discretization is used in areas without significant change in the flow field whereas the problem is refined in the zones of interest. This enables accounting for the dynamic change in scales of density-driven instabilities. In the second part of the thesis the MsFV algorithm, which originally employs one coarse level, is extended to an arbitrary number of coarse levels. We prove that this keeps the MsFV method efficient for problems with a large number of unknowns. In the last part of this thesis, we focus on the scales that control the evolution of density fingers. The identification of local and global flow patterns allows a coarse description at late times while conserving fine-scale details during onset stage. Results presented in this work advance the understanding of the Multiscale Finite-Volume method and offer efficient dynamic multiscale formulations to simulate density-driven instabilities. - Les nappes phréatiques caractérisées par des structures poreuses et des fractures très perméables représentent un intérêt particulier pour les hydrogéologues et ingénieurs environnementaux. Dans ces milieux, une large variété d'écoulements peut être observée. Les plus communs sont le transport de contaminants par les eaux souterraines, le transport réactif ou l'écoulement simultané de plusieurs phases non miscibles, comme le pétrole et l'eau. L'échelle qui caractérise ces écoulements est définie par l'interaction de l'hétérogénéité géologique et des processus physiques. Un fluide au repos dans l'espace interstitiel d'un milieu poreux peut être déstabilisé par des gradients de densité. Ils peuvent être induits par des changements locaux de température ou par dissolution d'un composé chimique. Les instabilités engendrées par des gradients de densité revêtent un intérêt particulier puisque qu'elles peuvent éventuellement compromettre la qualité des eaux. Un exemple frappant est la salinisation de l'eau douce dans les nappes phréatiques par pénétration d'eau salée plus dense dans les régions profondes. Dans le cas des écoulements gouvernés par les gradients de densité, les échelles caractéristiques de l'écoulement s'étendent de l'échelle poreuse où les phénomènes de croissance des instabilités s'opèrent, jusqu'à l'échelle des aquifères sur laquelle interviennent les phénomènes à temps long. Etant donné que les investigations in-situ sont pratiquement impossibles, les modèles numériques sont utilisés pour prédire et évaluer les risques liés aux instabilités engendrées par les gradients de densité. Une description correcte de ces phénomènes repose sur la description de toutes les échelles de l'écoulement dont la gamme peut s'étendre sur huit à dix ordres de grandeur dans le cas de grands aquifères. Il en résulte des problèmes numériques de grande taille qui sont très couteux à résoudre. Des schémas numériques sophistiqués sont donc nécessaires pour effectuer des simulations précises d'instabilités hydro-dynamiques à grande échelle. Dans ce travail, nous présentons différentes méthodes numériques qui permettent de simuler efficacement et avec précision les instabilités dues aux gradients de densité. Ces nouvelles méthodes sont basées sur les volumes finis multi-échelles. L'idée est de projeter le problème original à une échelle plus grande où il est moins coûteux à résoudre puis de relever la solution grossière vers l'échelle de départ. Cette technique est particulièrement adaptée pour résoudre des problèmes où une large gamme d'échelle intervient et évolue de manière spatio-temporelle. Ceci permet de réduire les coûts de calculs en limitant la description détaillée du problème aux régions qui contiennent un front de concentration mobile. Les aboutissements sont illustrés par la simulation de phénomènes tels que l'intrusion d'eau salée ou la séquestration de dioxyde de carbone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The exact analytical expression for the Hausdorff dimension of free processes driven by Gaussian noise in n-dimensional space is obtained. The fractal dimension solely depends on the time behavior of the arbitrary correlation function of the noise, ranging from DX=1 for Orstein-Uhlenbeck input noise to any real number greater than 1 for fractional Brownian motions.