925 resultados para FRACTAL DIMENSION
Resumo:
This paper presents a method for the quantification of cellular rejection in endomyocardial biopsies of patients submitted to heart transplant. The model is based on automatic multilevel thresholding, which employs histogram quantification techniques, histogram slope percentage analysis and the calculation of maximum entropy. The structures were quantified with the aid of the multi-scale fractal dimension and lacunarity for the identification of behavior patterns in myocardial cellular rejection in order to determine the most adequate treatment for each case.
Resumo:
Fractal dimensions of grain boundary region in doped SnO2 ceramics were determined based on previously derived fractal model. This model considers fractal dimension as a measure of homogeneity of distribution of charge carriers. Application of the derived fractal model enables calculation of fractal dimension using results of impedance spectroscopy. The model was verified by experimentally determined temperature dependence of the fractal dimension of SnO2 ceramics. Obtained results confirm that the non-Debye response of the grain boundary region is connected with distribution of defects and consequently with a homogeneity of a distribution of the charge carriers. Also, it was found that C-T-1 function has maximum at temperature at which the change in dominant type of defects takes place. This effect could be considered as a third-order transition.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The estimation of the number of people in an area under surveillance is very important for the problem of crowd monitoring. When an area reaches an occupation level greater than the projected one, people's safety can be in danger. This paper describes a new technique for crowd density estimation based on Minkowski fractal dimension. Fractal dimension has been widely used to characterize data texture in a large number of physical and biological sciences. The results of our experiments show that fractal dimension can also be used to characterize levels of people congestion in images of crowds. The proposed technique is compared with a statistical and a spectral technique, in a test study of nearly 300 images of a specific area of the Liverpool Street Railway Station, London, UK. Results obtained in this test study are presented.
Resumo:
This paper presents the study of computational methods applied to histological texture analysis in order to identify plant species, a very difficult task due to the great similarity among some species and presence of irregularities in a given species. Experiments were performed considering 300 ×300 texture windows extracted from adaxial surface epidermis from eight species. Different texture methods were evaluated using Linear Discriminant Analysis (LDA). Results showed that methods based on complexity analysis perform a better texture discrimination, so conducting to a more accurate identification of plant species. © 2009 Springer Berlin Heidelberg.
Resumo:
The results of the histopathological analyses after the implantation of highly crystalline PVA microspheres in subcutaneous tissues of Wistar rats are here in reported. Three different groups of PVA microparticles were systematically studied: highly crystalline, amorphous, and commercial ones. In addition to these experiments, complementary analyses of architectural complexity were performed using fractal dimension (FD), and Shannon's entropy (SE) concepts. The highly crystalline microspheres induced inflammatory reactions similar to the ones observed for the commercial ones, while the inflammatory reactions caused by the amorphous ones were less intense. Statistical analyses of the subcutaneous tissues of Wistar rats implanted with the highly crystalline microspheres resulted in FD and SE values significantly higher than the statistical parameters observed for the amorphous ones. The FD and SE parameters obtained for the subcutaneous tissues of Wistar rats implanted with crystalline and commercial microparticles were statistically similar. Briefly, the results indicated that the new highly crystalline microspheres had biocompatible behavior comparable to the commercial ones. In addition, statistical tools such as FD and SE analyses when combined with histopathological analyses can be useful tools to investigate the architectural complexity tissues caused by complex inflammatory reactions. © 2012 WILEY PERIODICALS, INC.
Resumo:
Aims: This study compared fractal dimension (FD) values on mandibular trabecular bone in digital and digitized images at different spatial and contrast resolutions. Materials and Methods: 12 radiographs of dried human mandibles were obtained using custom-fabricated hybrid image receptors composed of a periapical radiographic film and a photostimulable phosphor plate (PSP). The film/ PSP sets were disassembled, and the PSPs produced images with 600 dots per inch (dpi) and 16 bits. These images were exported as tagged image file format (TIFF), 16 and 8 bits, and 600, 300 and 150 dpi. The films were processed and digitized 3 times on a flatbed scanner, producing TIFF images with 600, 300 and 150 dpi, and 8 bits. On each image, a circular region of interest was selected on the trabecular alveolar bone, away from root apices and FD was calculated by tile counting method. Two-way ANOVA and Tukey’s test were conducted to compare the mean values of FD, according to image type and spatial resolution (α = 5%). Results: Spatial resolution was directly and inversely proportional to FD mean values and standard deviation, respectively. Spatial resolution of 150 dpi yielded significant lower mean values of FD than the resolutions of 600 and 300 dpi ( P < 0.05). A nonsignificant variability was observed for the image types ( P > 0.05). The interaction between type of image and level of spatial resolution was not signi fi cant (P > 0.05). Conclusion: Under the tested, conditions, FD values of the mandibular trabecular bone assessed either by digital or digitized images did not change. Furthermore, these values were in fluenced by lower spatial resolution but not by contrast resolution.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The present work shows a novel fractal dimension method for shape analysis. The proposed technique extracts descriptors from a shape by applying a multi-scale approach to the calculus of the fractal dimension. The fractal dimension is estimated by applying the curvature scale-space technique to the original shape. By applying a multi-scale transform to the calculus, we obtain a set of descriptors which is capable of describing the shape under investigation with high precision. We validate the computed descriptors in a classification process. The results demonstrate that the novel technique provides highly reliable descriptors, confirming the efficiency of the proposed method. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4757226]
Resumo:
This paper is dedicated to estimate the fractal dimension of exponential global attractors of some generalized gradient-like semigroups in a general Banach space in terms of the maximum of the dimension of the local unstable manifolds of the isolated invariant sets, Lipschitz properties of the semigroup and the rate of exponential attraction. We also generalize this result for some special evolution processes, introducing a concept of Morse decomposition with pullback attractivity. Under suitable assumptions, if (A, A*) is an attractor-repeller pair for the attractor A of a semigroup {T(t) : t >= 0}, then the fractal dimension of A can be estimated in terms of the fractal dimension of the local unstable manifold of A*, the fractal dimension of A, the Lipschitz properties of the semigroup and the rate of the exponential attraction. The ingredients of the proof are the notion of generalized gradient-like semigroups and their regular attractors, Morse decomposition and a fine analysis of the structure of the attractors. As we said previously, we generalize this result for some evolution processes using the same basic ideas. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Fractal theory presents a large number of applications to image and signal analysis. Although the fractal dimension can be used as an image object descriptor, a multiscale approach, such as multiscale fractal dimension (MFD), increases the amount of information extracted from an object. MFD provides a curve which describes object complexity along the scale. However, this curve presents much redundant information, which could be discarded without loss in performance. Thus, it is necessary the use of a descriptor technique to analyze this curve and also to reduce the dimensionality of these data by selecting its meaningful descriptors. This paper shows a comparative study among different techniques for MFD descriptors generation. It compares the use of well-known and state-of-the-art descriptors, such as Fourier, Wavelet, Polynomial Approximation (PA), Functional Data Analysis (FDA), Principal Component Analysis (PCA), Symbolic Aggregate Approximation (SAX), kernel PCA, Independent Component Analysis (ICA), geometrical and statistical features. The descriptors are evaluated in a classification experiment using Linear Discriminant Analysis over the descriptors computed from MFD curves from two data sets: generic shapes and rotated fish contours. Results indicate that PCA, FDA, PA and Wavelet Approximation provide the best MFD descriptors for recognition and classification tasks. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Background: Prostate cancer is a serious public health problem that affects quality of life and has a significant mortality rate. The aim of the present study was to quantify the fractal dimension and Shannon’s entropy in the histological diagnosis of prostate cancer. Methods: Thirty-four patients with prostate cancer aged 50 to 75 years having been submitted to radical prostatectomy participated in the study. Histological slides of normal (N), hyperplastic (H) and tumor (T) areas of the prostate were digitally photographed with three different magnifications (40x, 100x and 400x) and analyzed. The fractal dimension (FD), Shannon’s entropy (SE) and number of cell nuclei (NCN) in these areas were compared. Results: FD analysis demonstrated the following significant differences between groups: T vs. N and H vs. N groups (p < 0.05) at a magnification of 40x; T vs. N (p < 0.01) at 100x and H vs. N (p < 0.01) at 400x. SE analysis revealed the following significant differences groups: T vs. H and T vs. N (p < 0.05) at 100x; and T vs. H and T vs. N (p < 0.001) at 400x. NCN analysis demonstrated the following significant differences between groups: T vs. H and T vs. N (p < 0.05) at 40x; T vs. H and T vs. N (p < 0.0001) at 100x; and T vs. H and T vs. N (p < 0.01) at 400x. Conclusions: The quantification of the FD and SE, together with the number of cell nuclei, has potential clinical applications in the histological diagnosis of prostate cancer.
Resumo:
Turbulent mixing is a very important issue in the study of geophysical phenomena because most fluxes arising in geophysics fluids are turbulent. We study turbulent mixing due to convection using a laboratory experimental model with two miscible fluids of different density with an initial top heavy density distribution. The fluids that form the initial unstable stratification are miscible and the turbulence will produce molecular mixing. The denser fluid comes into the lighter fluid layer and it generates several forced plumes which are gravitationally unstable. As the turbulent plumes develop, the denser fluid comes into contact with the lighter fluid layer and the mixing process grows. Their development is caused by the lateral interaction between these plumes at the complex fractal surface between the dense and light fluids