983 resultados para FRACTAL DESCRIPTORS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we propose a new method for face recognition using fractal codes. Fractal codes represent local contractive, affine transformations which when iteratively applied to range-domain pairs in an arbitrary initial image result in a fixed point close to a given image. The transformation parameters such as brightness offset, contrast factor, orientation and the address of the corresponding domain for each range are used directly as features in our method. Features of an unknown face image are compared with those pre-computed for images in a database. There is no need to iterate, use fractal neighbor distances or fractal dimensions for comparison in the proposed method. This method is robust to scale change, frame size change and rotations as well as to some noise, facial expressions and blur distortion in the image

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During the late 20th century it was proposed that a design aesthetic reflecting current ecological concerns was required within the overall domain of the built environment and specifically within landscape design. To address this, some authors suggested various theoretical frameworks upon which such an aesthetic could be based. Within these frameworks there was an underlying theme that the patterns and processes of Nature may have the potential to form this aesthetic — an aesthetic based on fractal rather than Euclidean geometry. In order to understand how fractal geometry, described as the geometry of Nature, could become the referent for a design aesthetic, this research examines the mathematical concepts of fractal Geometry, and the underlying philosophical concepts behind the terms ‘Nature’ and ‘aesthetics’. The findings of this initial research meant that a new definition of Nature was required in order to overcome the barrier presented by the western philosophical Nature¯culture duality. This new definition of Nature is based on the type and use of energy. Similarly, it became clear that current usage of the term aesthetics has more in common with the term ‘style’ than with its correct philosophical meaning. The aesthetic philosophy of both art and the environment recognises different aesthetic criteria related to either the subject or the object, such as: aesthetic experience; aesthetic attitude; aesthetic value; aesthetic object; and aesthetic properties. Given these criteria, and the fact that the concept of aesthetics is still an active and ongoing philosophical discussion, this work focuses on the criteria of aesthetic properties and the aesthetic experience or response they engender. The examination of fractal geometry revealed that it is a geometry based on scale rather than on the location of a point within a three-dimensional space. This enables fractal geometry to describe the complex forms and patterns created through the processes of Wild Nature. Although fractal geometry has been used to analyse the patterns of built environments from a plan perspective, it became clear from the initial review of the literature that there was a total knowledge vacuum about the fractal properties of environments experienced every day by people as they move through them. To overcome this, 21 different landscapes that ranged from highly developed city centres to relatively untouched landscapes of Wild Nature have been analysed. Although this work shows that the fractal dimension can be used to differentiate between overall landscape forms, it also shows that by itself it cannot differentiate between all images analysed. To overcome this two further parameters based on the underlying structural geometry embedded within the landscape are discussed. These parameters are the Power Spectrum Median Amplitude and the Level of Isotropy within the Fourier Power Spectrum. Based on the detailed analysis of these parameters a greater understanding of the structural properties of landscapes has been gained. With this understanding, this research has moved the field of landscape design a step close to being able to articulate a new aesthetic for ecological design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fractional differential equation is used to describe a fractal model of mobile/immobile transport with a power law memory function. This equation is the limiting equation that governs continuous time random walks with heavy tailed random waiting times. In this paper, we firstly propose a finite difference method to discretize the time variable and obtain a semi-discrete scheme. Then we discuss its stability and convergence. Secondly we consider a meshless method based on radial basis functions (RBF) to discretize the space variable. By contrast to conventional FDM and FEM, the meshless method is demonstrated to have distinct advantages: calculations can be performed independent of a mesh, it is more accurate and it can be used to solve complex problems. Finally the convergence order is verified from a numerical example is presented to describe the fractal model of mobile/immobile transport process with different problem domains. The numerical results indicate that the present meshless approach is very effective for modeling and simulating of fractional differential equations, and it has good potential in development of a robust simulation tool for problems in engineering and science that are governed by various types of fractional differential equations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The quality of dried food is affected by a number of factors including quality of raw material, initial microstructure, and drying conditions. The structure of the food materials goes through deformations due to the simultaneous effect of heat and mass transfer during the drying process. Shrinkage and changes in porosity, microstructure and appearance are some of the most remarkable features that directly influence overall product quality. Porosity and microstructure are the important material properties in relation to the quality attributes of dried foods. Fractal dimension (FD) is a quantitative approach of measuring surface, pore characteristics, and microstructural changes [1]. However, in the field of fractal analysis, there is a lack of research in developing relationship between porosity, shrinkage and microstructure of different solid food materials in different drying process and conditions [2-4]. Establishing a correlation between microstructure and porosity through fractal dimension during convective drying is the main objective of this work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fractional differential equation is used to describe a fractal model of mobile/immobile transport with a power law memory function. This equation is the limiting equation that governs continuous time random walks with heavy tailed random waiting times. In this paper, we firstly propose a finite difference method to discretize the time variable and obtain a semi-discrete scheme. Then we discuss its stability and convergence. Secondly we consider a meshless method based on radial basis functions (RBFs) to discretize the space variable. In contrast to conventional FDM and FEM, the meshless method is demonstrated to have distinct advantages: calculations can be performed independent of a mesh, it is more accurate and it can be used to solve complex problems. Finally the convergence order is verified from a numerical example which is presented to describe a fractal model of mobile/immobile transport process with different problem domains. The numerical results indicate that the present meshless approach is very effective for modeling and simulating fractional differential equations, and it has good potential in the development of a robust simulation tool for problems in engineering and science that are governed by various types of fractional differential equations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Whole image descriptors have recently been shown to be remarkably robust to perceptual change especially compared to local features. However, whole-image-based localization systems typically rely on heuristic methods for determining appropriate matching thresholds in a particular environment. These environment-specific tuning requirements and the lack of a meaningful interpretation of these arbitrary thresholds limits the general applicability of these systems. In this paper we present a Bayesian model of probability for whole-image descriptors that can be seamlessly integrated into localization systems designed for probabilistic visual input. We demonstrate this method using CAT-Graph, an appearance-based visual localization system originally designed for a FAB-MAP-style probabilistic input. We show that using whole-image descriptors as visual input extends CAT-Graph’s functionality to environments that experience a greater amount of perceptual change. We also present a method of estimating whole-image probability models in an online manner, removing the need for a prior training phase. We show that this online, automated training method can perform comparably to pre-trained, manually tuned local descriptor methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phase behavior of CO2 confined in porous fractal silica with volume fraction of SiO2 φs = 0.15 was investigated using small-angle neutron scattering (SANS) and ultrasmall-angle neutron scattering (USANS) techniques. The range of fluid densities (0<(FCO2)bulk<0.977 g/cm3) and temperatures (T=22 °C, 35 and 60 °C) corresponded to gaseous, liquid, near critical and supercritical conditions of the bulk fluid. The results revealed formation of a dense adsorbed phase in small pores with sizes D<40 A° at all temperatures. At low pressure (P <55 bar, (FCO2)bulk <0.2 g/cm3) the average fluid density in pores may exceed the density of bulk fluid by a factor up to 6.5 at T=22 °C. This “enrichment factor” gradually decreases with temperature, however significant fluid densification in small pores still exists at temperature T=60°C, i.e., far above the liquid-gas critical temperature of bulk CO2 (TC=31.1 °C). Larger pores are only partially filled with liquid-like adsorbed layer which coexists with unadsorbed fluid in the pore core. With increasing pressure, all pores become uniformly filled with the fluid, showing no measurable enrichment or depletion of the porous matrix with CO2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For users of germplasm collections, the purpose of measuring characterization and evaluation descriptors, and subsequently using statistical methodology to summarize the data, is not only to interpret the relationships between the descriptors, but also to characterize the differences and similarities between accessions in relation to their phenotypic variability for each of the measured descriptors. The set of descriptors for the accessions of most germplasm collections consists of both numerical and categorical descriptors. This poses problems for a combined analysis of all descriptors because few statistical techniques deal with mixtures of measurement types. In this article, nonlinear principal component analysis was used to analyze the descriptors of the accessions in the Australian groundnut collection. It was demonstrated that the nonlinear variant of ordinary principal component analysis is an appropriate analytical tool because subspecies and botanical varieties could be identified on the basis of the analysis and characterized in terms of all descriptors. Moreover, outlying accessions could be easily spotted and their characteristics established. The statistical results and their interpretations provide users with a more efficient way to identify accessions of potential relevance for their plant improvement programs and encourage and improve the usefulness and utilization of germplasm collections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a topological localization method based on optical flow information. We analyse the statistical characteristics of the optical flow signal and demonstrate that the flow vectors can be used to identify and describe key locations in the environment. The key locations (nodes) correspond to significant scene changes and depth discontinuities. Since optical flow vectors contain position, magnitude and angle information, for each node, we extract low and high order statistical moments of the vectors and use them as descriptors for that node. Once a database of nodes and their corresponding optical flow features is created, the robot can perform topological localization by using the Mahalanobis distance between the current frame and the database. This is supported by field trials, which illustrate the repeatability of the proposed method for detecting and describing key locations in indoor and outdoor environments in challenging and diverse lighting conditions.

Relevância:

20.00% 20.00%

Publicador: