980 resultados para FORMIC ACID


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, it is reported for the first time that a carbon-supported Pd-P (Pd-P/C) catalyst for the anodic catalyst in the direct formic acid fuel cell (DFAFC) can be prepared. The Pd-P/C catalyst shows that its electrocatalytic activity and especially its stability for the oxidation of formic acid are much higher than that of a Pd/C catalyst. Therefore, the Pd-P/C catalyst may have practical applications in DFAFCs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Absolute line intensities in the v6 and v8 interacting bands of trans-HCOOH, observed near 1105.4 and 1033.5 cm -1, respectively, and the dissociation constant of the formic acid dimer (HCOOH)2 have been measured using Fourier transform spectroscopy at a resolution of 0.002 cm-1. Eleven spectra of formic acid, at 296.0(5) K and pressures ranging from 14.28(25) to 314.0(24) Pa, have been recorded between 600 and 1900 cm-1 with an absorption path length of 19.7(2) cm. 437 integrated absorption coefficients have been measured for 72 lines in the v6 band. Analysis of the pressure dependence yielded the dissociation constant of the formic acid dimer, k p=361(45) Pa, and the absolute intensity of the 72 lines of HCOOH. The accuracy of these results was carefully estimated. The absolute intensities of four lines of the weak v8 band were also measured. Using an appropriate theory, the integrated intensity of the v6 and v 8 bands was determined to be 3.47 × 1017 and 4.68 × 10-19 cm-1/(molecule cm-1) respectively, at 296 K. Both the dissociation constant and integrated intensities were compared to earlier measurements. © 2007 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The issue of multiple proton transfer (PT) reactions in solution is addressed by performing molecular dynamics simulations for a formic acid dimer embedded in a water cluster. The reactant species is treated quantum mechanically, within a density functional approach, while the solvent is represented by a classical model. By constraining different distances within the dimer we analyze the PT process in a variety of situations representative of more complex environments. Free energy profiles are presented, and analyzed in terms of typical solvated configurations extracted from the simulations. A decrease in the PT barrier height upon solvation is rationalized in terms of a transition state which is more polarized than the stable states. The dynamics of the double PT process is studied in a low-barrier case and correlated with solvent polarization fluctuations. Cooperative effects in the motion of the two protons are observed in two different situations: when the solvent polarization does not favor the transfer of one of the two protons and when the motion of the two protons is not synchronized. This body of observations is correlated with local structural and dynamical properties of the solvent in the vicinity of the reactant. (C) 2000 American Institute of Physics. [S0021-9606(00)51121-0].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At the heavy ion storage ring CRYRING in Stockholm, Sweden, we have investigated the dissociative recombination of DCOOD2+ at low relative kinetic energies, from ~1 meV to 1 eV. The thermal rate coefficient has been found to follow the expression k(T) = 8.43 × 10-7 (T/300)^-0.78 cm3 s-1 for electron temperatures, T, ranging from ~10 to ~1000 K. The branching fractions of the reaction have been studied at ~2 meV relative kinetic energy. It has been found that ~87% of the reactions involve breaking a bond between heavy atoms. In only 13% of the reactions do the heavy atoms remain in the same product fragment. This puts limits on the gas-phase production of formic acid, observed in both molecular clouds and cometary comae. Using the experimental results in chemical models of the dark cloud, TMC-1, and using the latest release of the UMIST Database for Astrochemistry improves the agreement with observations for the abundance of formic acid. Our results also strengthen the assumption that formic acid is a component of cometary ices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tetrahexahedral Pt nanocrystals (THH Pt NCs), bound by high index facets, belong to an emerging class of nanomaterials that promise to bridge the gap between model and practical electrocatalysts. The atomically stepped surfaces of THH Pt NCs are extremely active for the electrooxidation of small organic molecules but they also readily accommodate the dissociative chemisorption of such species, resulting in poisoning by strongly adsorbed CO. Formic acid oxidation is an ideal reaction for studying the balance between these competing catalyst characteristics, since it can proceed by either a direct or a CO mediated pathway. Herein, we describe electrochemical and in situ FTIR spectroscopic investigations of formic acid electrooxidation at both clean and Au adatom modified THH Pt NC surfaces. The Au decoration leads to higher catalytic currents and enhanced CO2 production in the low potential range. As the CO oxidation behaviour of the catalyst is not changed by the presence of the Au, it is likely that the role of the Au is to promote the direct pathway. Beyond their fundamental importance, these results are significant in the development of stable, poison resistant anodic electrocatalysts for direct formic acid fuel cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electro-oxidations of methanol and formic acid at a Ru(0001) electrode in perchloric acid solution have been investigated as functions of temperature, potential and time using in-situ FTIR spectroscopy, and the results compared to those obtained during our previous studies on the adsorption and electro-oxidation of CO under the same conditions. It was found that no dissociative adsorption or electro-oxidation of methanol takes place at the Ru(0001) at potentials 1000 mV, the oxidation of formic acid to CO was significantly increased, and the oxidation of methanol to CO and methyl formate was observed, both of which were attributed to the formation of an active RuO phase on the Ru(0001) surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A detailed theoretical investigation of the large amplitude motions in the S, excited electronic state of formic acid (HCOOH) was done. This study focussed on the the S, «- So electronic band system of formic acid (HCOOH). The torsion and wagging large amplitude motions of the S, were considered in detail. The potential surfaces were simulated using RHF/UHF ab-initio calculations for the two electronic states. The energy levels were evaluated by the variational method using free rotor basis functions for the torsional coordinates and harmonic oscillator basis functions for the wagging coordinates. The simulated spectrum was compared to the slit-jet-cooled fluorescence excitation spectrum allowing for the assignment of several vibronic bands. A rotational analysis of certain bands predicted that the individual bands are a mixture of rotational a, b and c-type components.The electronically allowed transition results in the c-type or Franck-Condon band and the electronically forbidden, but vibronically allowed transition creates the a/b-type or Herzberg-Teller components. The inversion splitting between these two band types differs for each band. The analysis was able to predict the ratio of the a, b and c-type components of each band.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The analytical determination of atmospheric pollutants still presents challenges due to the low-level concentrations (frequently in the mu g m(-3) range) and their variations with sampling site and time In this work a capillary membrane diffusion scrubber (CMDS) was scaled down to match with capillary electrophoresis (CE) a quick separation technique that requires nothing more than some nanoliters of sample and when combined with capacitively coupled contactless conductometric detection (C(4)D) is particularly favorable for ionic species that do not absorb in the UV-vis region like the target analytes formaldehyde formic acid acetic acid and ammonium The CMDS was coaxially assembled inside a PTFE tube and fed with acceptor phase (deionized water for species with a high Henry s constant such as formaldehyde and carboxylic acids or acidic solution for ammonia sampling with equilibrium displacement to the non-volatile ammonium ion) at a low flow rate (8 3 nLs(-1)) while the sample was aspirated through the annular gap of the concentric tubes at 25 mLs(-1) A second unit in all similar to the CMDS was operated as a capillary membrane diffusion emitter (CMDE) generating a gas flow with know concentrations of ammonia for the evaluation of the CMDS The fluids of the system were driven with inexpensive aquarium air pumps and the collected samples were stored in vials cooled by a Peltier element Complete protocols were developed for the analysis in air of NH(3) CH(3)COOH HCOOH and with a derivatization setup CH(2)O by associating the CMDS collection with the determination by CE-C(4)D The ammonia concentrations obtained by electrophoresis were checked against the reference spectrophotometric method based on Berthelot s reaction Sensitivity enhancements of this reference method were achieved by using a modified Berthelot reaction solenoid micro-pumps for liquid propulsion and a long optical path cell based on a liquid core waveguide (LCW) All techniques and methods of this work are in line with the green analytical chemistry trends (C) 2010 Elsevier B V All rights reserved

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report in this work the study of the interaction between formic acid and an oxidized platinum surface under open circuit conditions. The investigation was carried out with the aid of in situ infrared spectroscopy, and results analyzed in terms of a mathematical model and numerical simulations. It has been found that during the first seconds of the interaction a small amount of CO(2) is produced and absolutely no adsorbed CO was observed. A sudden drop in potential then follows, which is accompanied by a steep increase first of CO(2) production and then by adsorbed CO. The steep transient was rationalized in terms of an autocatalytic production of free platinum sites which enhances the overall rate of reaction. Modeling and simulation showed nearly quantitative agreement with the experimental observations and provided further insight into some experimentally inaccessible variables such as surface free sites. Finally, based on the understanding provided from the combined experimental and theoretical approach, we discuss the general aspects influencing the open circuit transient.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrooxidation of small organic molecules on platinum surfaces usually involves different structure-dependent steps that include adsorption and desorption of various species and multiple reaction pathways. Because temperature plays a decisive role on each individual step, understanding its global influence on the reaction mechanism is often a difficult task, especially when the system is studied under far from equilibrium conditions in the presence of kinetic instabilities. Aiming at contributing to unravel this problem, herein, we report an experimental study of the role played by temperature on the electrooxidation of formic acid on a Pt(100) electrode. The system was investigated under both close and far from equilibrium conditions, and apparent activation energies were estimated using different strategies. Overall, comparable activation energies were estimated under oscillatory and quasi-stationary conditions, at high potentials. At low potentials, the poisoning process associated with the formic acid dehydration step presented a negligible dependence with temperature and, therefore, zero activation energy. On the basis of our experimental findings, we suggest that formic acid dehydration is the main, but maybe not the unique, step that differentiates the temperature dependence of the oscillatory electrooxidation of formic acid on Pt(100) with that on polycrystalline platinum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experiments were carried out on the antibacterial effects of a commercial formic acid-propionic acid mixture (Bio-add(TM)) against different Salmonella serptj pes. The preparation exerted a strong antibacterial effect on S. typhimurium strain F98 in artificially contaminated feed. After 28 days storage, the bactericidal effect was still considerable. When chickens were reared on feed that had been treated with Bio-add(TM) and artificially contaminated with different serotypes, S. enteritidis, S. typhimurium and S. agona were not isolated from the caecal contents, but S. infantis was. No organisms of this strain were isolated when a lower feed-contamination rate of bacteria was used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The experiment described evaluated the effect of a commercial in-feed preparation (Bio-Add™) involving a mixture of formic acid and propionic acid on the incidence of experimental fowl typhoid in groups of 41 and 42 1-wk-old Rhode Island Red chickens. The chickens were infected through contact with 12 identical chickens that had been inoculated orally with 10 8 cfu of Salmonella gallinarum strain 9. The incidence of mortality and morbidity due to fowl typhoid was 31/41 (76%) in birds given untreated feed and 14/42 (33%) in birds given feed treated with Bio-Add™.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the considerable progress in the understanding of the mechanistic aspects of the oscillatory electro-oxidation of C1 molecules, there are apparently no systematic studies concerning the impact of surface modifiers on the oscillation dynamics. Herein we communicate on the oscillatory electro-oxidation of formic acid on ordered Pt3Sn intermetallic phase, and compare the results with those obtained on a polycrystalline platinum electrode. Overall, the obtained results were very reproducible, robust and allowed a detailed analysis on the correlation between the catalytic activity and the oscillation dynamics. The presence of Sn in the intermetallic electrode promotes drastic effects on the oscillatory dynamics. The decrease in the mean electrode potential and in the oscillation frequency, as well as the pronounced increase in the number oscillations (and also in the oscillation time), was discussed in connection with the substantial catalytic enhancement of the Pt3Sn towards the electro-oxidation of formic acid. The self-organized potential oscillations were used to probe the electrocatalytic activity of the Pt3Sn electrode and compare it with that for polycrystalline Pt. The presence of Sn resulted in a significant decrease (2-11 times, depending on the applied current) of the rate of surface poisoning. © 2012 Elsevier B.V.