47 resultados para FLT3
Resumo:
Die akute myeloische Leukämie (AML) stellt ein äußerst heterogenes hämatologisches Krankheitsbild dar, welches durch die unkontrollierte Proliferation unausdifferenzierter und gleichzeitig nicht-funktioneller hämatopoetischer Zellen gekennzeichnet ist. Sowohl die unterschiedliche Zellherkunft, als auch zytogenetische Aberrationen und molekulargenetische Mutationen sorgen für eine große Diversität der Erkrankung. In der Therapie kommen Chemotherapeutika zum Einsatz, welche die Leukämie in eine komplette Remission bringen sollen. Der einzige kurative Ansatz besteht aus der allogenen hämatopoetischen Stammzelltransplantation. Abgesehen von den gewünschten kurativen Effekten, induzieren die im Transplantat befindlichen Spender-T-Lymphozyten ebenfalls die Transplantat-gegen-Wirt Erkrankung – eine Hauptursache von Mortalität und Morbidität nach erfolgter allogener hämatopoetischer Stammzelltransplantation. Da bei vielen Patienten aufgrund ihres Alters und ihrer Begleiterkrankungen eine Transplantation nicht tolerieren und da viele akuten myeloischen Leukämien trotz Chemotherapie progredient sind, schlägt die Therapie fehl und es gibt keine Chance auf Heilung. rnZur Erforschung der pathologischen Prozesse der akuten myeloischen Leukämie sowie für die Entwicklung neuer Therapiekonzepte bedarf es stabiler Tiermodelle, die die maligne Erkrankung des Menschen darstellen können. Ziel der vorliegenden Arbeit war die Untersuchung des Engraftments humaner primärer akuter myeloischer Leukämien in immuninkompetenten NSG-Mäusen. Die Untersuchungen zeigten, dass lediglich 61,5% der getesteten Leukämien in den Versuchstieren nach der Xenotransplantation nachgewiesen werden konnten. Die Gründe hierfür sind noch nicht ausreichend geklärt, beinhalten jedoch vermutlich Elemente des Homings, des Überlebens der Zelle in der fremden murinen Knochenmarknische, der Abwesenheit spezifischer humaner Wachstumsfaktoren, sowie intrinsische Unterschiede unter den verschiedenen Leukämieproben. Leukämien, die mit einer schlechten Prognose beim Patienten verbunden sind, wachsen in den Tieren stärker an. In den Versuchen konnte gezeigt werden, dass Leukämien mit einer Längenmutation des FLT3-Rezeptors eher häufiger in den NSG-Mäusen anwachsen, als wenn diese Mutation fehlt. Die Analyse der erstellten Wachstumskinetiken zweier Leukämien ergab, dass die Höhe des Engraftments in den einzelnen Organen sowohl von der transplantierten Zellmenge, als auch von der Höhe der angesetzten Versuchszeit abhängt. Zudem wurde ein Wachstum humaner T-Lymphozyten in den xenotransplantierten Mäusen beobachtet, welches sowohl mit einem höheren Engraftment der Leukämie in der Maus verbunden war, als auch mit einer höheren Tiersterblichkeit vergesellschaftet war.rnZum Verhindern dieses Wachstums wurden zwei unterschiedliche Methoden angewendet und miteinander verglichen. Dabei erzielten sowohl die medikamentöse Behandlung der Tiere mit dem Calcineurininhibitor Cyclosporin A, als auch die CD3-Depletion der Leukämie vor der Transplantation ein T-Zell-freies Wachstum in den Mäusen, letzteres erwies sich jedoch als das schonendere Verfahren. In den T-Zell-freien Tieren konnte bei dem Großteil der Tiere kein Engraftment im Knochenmark festgestellt werden, was auf einen positiven Einfluss der humanen T-Lymphozyten beim Vorgang des Engraftments schließen lässt.rn
Resumo:
Akute Leukämien treten in allen Altersstufen auf. Akute lymphatische Leukämie (ALL) ist die häufigste Leukämie bei Kindern, während akute myeloischen Leukämien (AML) mit verschiedenen Untergruppen etwa 80% aller akuten Leukämien bei Erwachsenen ausmachen. Die Translokation t(8;21) resultiert in der Entstehung des Fusionsgens AML1-ETO und zählt zu den häufigen Translokationen bei der AML. Dabei fusioniert die DNA-bindende Domäne des AML1 mit dem fast kompletten ETO-Protein. AML1-ETO wirkt als dominanter Repressor der AML1-vermittelten transkriptionellen Regula-tion wichtiger hämatopoetischer Zielgene. Klinische Daten legen nahe, dass trotz der klarer Assoziation zwischen AML und der t(8;21) Translokation bei AML Patienten zusätzliche genetische Veränderungen – so genannte ‚second hits‘ – notwendig sind, um eine Leukämie effizient zu induzieren. Klinisch relevanten Komplimentationsonkogene sind unter anderen die aktivierte Rezeptortyrosinkinase FLT3, JAK2, NRAS, KRAS, c- KIT.rnZiel der vorliegenden Arbeit war es, ein Mausmodell zu etablieren, welches humane akute myeloische Leukämie rekapituliert und bei dem die Expression der entsprechen-den Onkogene reguliert werden kann. Als erstes wurde untersucht, ob eine gemeinsame Expression von AML1-ETO mit kRASG12D zur Induktion von Leukämie führen kann. Hierfür wurden Tiere generiert die gemeinsam AML1-ETO und kRASG12D unter der regulatorischen Sequenz des Tetrazyklin-Operators exprimierten. Der große Vorteil dieser Technologie ist die regulierbare Reversibilität der Genexpression. Um die Ex-pression der Zielgene auf blutbildende Zellen zu beschränken, wurden Knochenmark-chimären hergestellt. Im Beobachtungszeitraum von 12 Monaten führte die Expression von AML1-ETO und AML1-ETO/kRASG12D nicht zur Induktion einer akuten Leukä-mie. Die normale hämatopoetische Entwicklung war jedoch in diesen Tieren gestört. Der beobachtete Phänotyp entsprach einem myelodysplastischen Syndrome (MDS).rnIm zweiten Ansatz, wurden Tiere generiert die gemeinsam AML1-ETO und FLT3-ITD exprimierten. Hierfür wurden hämatopoetische Stammzellen aus ROSA26-iM2/tetO-AML1-ETO isoliert und mit Hilfe des retroviralen Vektors mit FLT3-ITD transduziert. In diesem Modell war es möglich, in kurzer Zeit eine akute Leukämie mit zu induzieren. Einige wenige Tiere hatten zum Zeitpunkt des Todes Anzeichen einer biphänotypischen Leukämie mit lymphatischen und myeloischen Blastenpopulationen. In drei Tieren in-duzierte die alleinige Expression von FLT3-ITD eine Leukämie. Alle Leukämien wurden durch FACS, Zytologie und Histopathologie bestätigt. Knochenmark- bzw. Milzzellen aus den erkrankten Tieren waren in der Lage nach Transfer in sekundäre Rezipienten eine Leukämie auszulösen. Somit besaßen sie ein uneingeschränktes Selbsterneue-rungspotential.rnEin erster Versuch, in dem AML1-ETO Expression in leukämischen Zellen abgeschaltet und FLT3-ITD mit Tyrosinkinase-Inhibitor inhibiert wurde, zeigte keine wesentliche Veränderung in der Leukämieprogression.rnDieses Leukämiemodell erlaubt die Rolle der beteiligten Onkogene während verschie-dener Stadien der Leukämie zu erforschen und damit möglicherweise neue Ansätze für Therapiestrategien zu entwickeln.
Resumo:
CCAAT/enhancer binding protein-α (CEBPA) mutations in acute myeloid leukemia (AML) patients with a normal karyotype (NK) confer favorable prognosis, whereas NK-AML patients per se are of intermediate risk. This suggests that blocked CEBPA function characterizes NK-AML with favorable outcome. We determined the prognostic significance of CEBPA DNA binding function by enzyme-linked immunosorbent assay in 105 NK-AML patients. Suppressed CEBPA DNA binding was defined by 21 good-risk AML patients with inv(16) or t(8;21) (both abnormalities targeting CEBPA) and 8 NK-AML patients with dominant-negative CEBPA mutations. NK-AML patients with suppressed CEBPA function showed a better overall survival (P = .0231) and disease-free survival (P = .0069) than patients with conserved CEBPA function. Suppressed CEBPA DNA binding was an independent marker for better overall survival and disease-free survival in a multivariable analysis that included FLT3-ITD, NPM1 and CEBPA mutation status, white blood cell count, age and lactate dehydrogenase. These data indicate that suppressed CEBPA function is associated with favorable prognosis in NK-AML patients.
Resumo:
Sphingosine-1-phosphate (S1P) has been implicated in angiogenesis, inflammation, cancerogenesis, neurological excitability and immune regulation and is synthesized by two different sphingosine kinases (SphK). It was suggested that mice lacking the gene for SphK1 exhibit no obvious phenotype, because SphK2 compensates for its absence. However, recent investigations revealed that under challenge SphK1 contributed to pro-inflammatory processes favoring Th2 and Th17 rather than Th1-type reactions. To investigate the immune modulatory role of SphK1 as opposed to SphK2 specifically for the Th1 propagating IL-12p70 we compared WT and SphK1(-/-) splenocytes and Flt3-ligand differentiated BMCs of WT and SphK1(-/-), representing dendritic cells as major producers of IL-12p70, incubated with LPS. We determined the impact on IL-12p70 in comparison to other inflammatory cytokines, and on DC and macrophage surface marker expression, SphK mRNA, protein expression and enzymatic activity in splenocytes. Our data demonstrated that SphK1 deficiency enhanced LPS-induced IL-12p70 production although SphK2 was present. To further characterize SphK1-dependent IL-12p70 regulation we exogenously applied S1P, SEW2871 and the new potent S1P1 agonist CYM5442. Both S1P and S1P1-specific analogs fully compensated the increase of IL-12p70 production in SphK1-deficient splenocytes. The use of pertussis toxin, to block G(i)-coupled signaling downstream of S1P1, again increased IL-12p70 and neglected the compensation achieved by addition of S1P and S1P1 agonists pointing on the importance of this specific S1P-receptor. Given that, in parallel to a prominent IL-12p35 increase following LPS stimulation, LPS also enhanced SphK expression and total SphK activity, we concluded that SphK1-derived S1P acting via S1P1 is a major mechanism of this negative IL-12p70 feedback loop, which did not affect other cytokines. Moreover, our data showed that SphK2 activity failed to compensate for SphK1 deficiency. These findings clearly point to a divergent and cytokine-specific impact of immune cell SphK1 and SphK2 in chronic inflammation and cancer.
Resumo:
Dendritic cells (DC) represent a heterogeneous cell family of major importance for innate immune responses against pathogens and antigen presentation during infection, cancer, allergy and autoimmunity. The aim of the present study was to characterize canine DC generated in vitro with respect to their phenotype, responsiveness to toll-like receptor (TLR) ligands and T-cell stimulatory capacity. DC were derived from monocytes (MoDC) and from bone marrow hematopoietic cells cultured with either Flt3-ligand (FL-BMDC) or with GM-CSF (GM-BMDC). All three methods generated cells with typical DC morphology that expressed CD1c, CD11c and CD14, similar to macrophages. However, CD40 was only found on DC, CD206 on MPhi and BMDC, but not on monocytes and MoDC. CD1c was not found on monocytes but on all in vitro differentiated cells. FL-BMDC and GM-BMDC were partially positive for CD4 and CD8. CD45RA was expressed on a subset of FL-BMDC but not on MoDC and GM-BMDC. MoDC and FL-DC responded well to TLR ligands including poly-IC (TLR2), Pam3Cys (TLR3), LPS (TLR4) and imiquimod (TLR7) by up-regulating MHC II and CD86. The generated DC and MPhi showed a stimulatory capacity for lymphocytes, which increased upon maturation with LPS. Taken together, our results are the basis for further characterization of canine DC subsets with respect to their role in inflammation and immune responses.
Resumo:
PURPOSE: To characterize chemoattractants expressed by the retinal pigment epithelium (RPE) after sodium iodate (NaIO3)-induced damage and to investigate whether ocular-committed stem cells preexist in the bone marrow (BM) and migrate in response to the chemoattractive signals expressed by the damaged RPE. METHODS: C57/BL6 mice were treated with a single intravenous injection of NaIO3 (50 mg/kg) to create RPE damage. At different time points real-time RT-PCR, ELISA, and immunohistochemistry were used to identify chemoattractants secreted in the subretinal space. Conditioned medium from NaIO3-treated mouse RPE was used in an in vitro assay to assess chemotaxis of stem cell antigen-1 positive (Sca-1+) BM mononuclear cells (MNCs). The expression of early ocular markers (MITF, Pax-6, Six-3, Otx) in migrated cells and in MNCs isolated from granulocyte colony-stimulating factor (G-CSF) and Flt3 ligand (FL)-mobilized and nonmobilized peripheral blood (PB) was analyzed by real-time RT-PCR. RESULTS: mRNA for stromal cell-derived factor-1 (SDF-1), C3, hepatocyte growth factor (HGF), and leukemia inhibitory factor (LIF) was significantly increased, and higher SDF-1 and C3 protein secretion from the RPE was found after NaIO3 treatment. A higher number of BMMNCs expressing early ocular markers migrated to conditioned medium from damaged retina. There was also increased expression of early ocular markers in PBMNCs after mobilization. CONCLUSIONS: Damaged RPE secretes cytokines that have been shown to serve as chemoattractants for BM-derived stem cells (BMSCs). Retina-committed stem cells appear to reside in the BM and can be mobilized into the PB by G-CSF and FL. These stem cells may have the potential to serve as an endogenous source for tissue regeneration after RPE damage.
Resumo:
PURPOSE: The aim of the present study was to investigate whether bone marrow-derived cells (BMCs) can be induced to express retinal pigment epithelial (RPE) cell markers in vitro and can home to the site of RPE damage after mobilization and express markers of RPE lineage in vivo. METHODS: Adult RPE cells were cocultured with green fluorescence protein (GFP)-labeled stem cell antigen-1 positive (Sca-1(+)) BMCs for 1, 2, and 3 weeks. Cell morphology and expression of RPE-specific markers and markers for other retinal cell types were studied. Using an animal model of sodium iodate (NaIO(3))-induced RPE degeneration, BMCs were mobilized into the peripheral circulation by granulocyte-colony stimulating factor, flt3 ligand, or both. Immunocytochemistry was used to identify and characterize BMCs in the subretinal space in C57BL/6 wild-type (wt) mice and GFP chimeric mice. RESULTS: In vitro, BMCs changed from round to flattened, polygonal cells and expressed cytokeratin, RPE65, and microphthalmia transcription factor (MITF) when cocultured in direct cell-cell contact with RPE. In vivo, BMCs were identified in the subretinal space as Sca-1(+) or c-kit(+) cells. They were also double labeled for GFP and RPE65 or MITF. These cells formed a monolayer on the Bruch membrane in focal areas of RPE damage. CONCLUSIONS: Thus, it appears that BMCs, when mobilized into the peripheral circulation, can home to focal areas of RPE damage and express cell markers of RPE lineage. The use of endogenous BMCs to replace damaged retinal tissue opens new possibilities for cell replacement therapy in ophthalmology.
Resumo:
PURPOSE: The unfolded protein response is triggered by the accumulation of misfolded proteins within the endoplasmic reticulum. Previous studies suggest that the unfolded protein response is activated in some cancer cell lines and involved in tumor development. The role of the unfolded protein response during leukemogenesis is unknown thus far. EXPERIMENTAL DESIGN: Here, we assessed the induction of key effectors of the unfolded protein response in leukemic cells at diagnosis of 105 acute myeloid leukemia (AML) patients comprising all subtypes. We determined the formation of the spliced variant of the X-box-binding protein 1 (XBP1) mRNA, as well as expression levels of calreticulin, GRP78, and CHOP mRNA. RESULTS: The formation of the spliced variant of XBP1s was detectable in 16.2% (17 of 105) of AML patients. Consistent with activated unfolded protein response, this group also had significantly increased expression of calreticulin, GRP78, and CHOP. AML patients with activated unfolded protein response had lower WBC counts, lactate dehydrogenase levels, and more frequently, secondary AML. The incidence of fms-related tyrosine kinase 3 (FLT3) mutations was significantly lower in patients with activated unfolded protein response. In addition, an association was observed between activated unfolded protein response and deletion of chromosome 7. Finally, the clinical course of AML patients with activated unfolded protein response was more favorable with lower relapse rate (P = 0.0182) and better overall (P = 0.041) and disease-free survival (P = 0.022). CONCLUSIONS: These results suggest that the unfolded protein response is activated in a considerable subset of AML patients. AML patients with activated unfolded protein response present specific clinical characteristics and a more favorable course of the disease.
Resumo:
PURPOSE: Dasatinib is a dual Src/Abl inhibitor recently approved for Bcr-Abl+ leukemias with resistance or intolerance to prior therapy. Because Src kinases contribute to multiple blood cell functions by triggering a variety of signaling pathways, we hypothesized that their molecular targeting might lead to growth inhibition in acute myeloid leukemia (AML). EXPERIMENTAL DESIGN: We studied growth factor-dependent and growth factor-independent leukemic cell lines, including three cell lines expressing mutants of receptor tyrosine kinases (Flt3 or c-Kit) as well as primary AML blasts for responsiveness to dasatinib. RESULTS: Dasatinib resulted in the inhibition of Src family kinases in all cell lines and blast cells at approximately 1 x 10(-9) mol/L. It also inhibited mutant Flt3 or Kit tyrosine phosphorylation at approximately 1 x 10(-6) mol/L. Mo7e cells expressing the activating mutation (codon 816) of c-Kit were most sensitive to growth inhibition with a GI(50) of 5 x 10(-9) mol/L. Primary AML blast cells exhibited a growth inhibition of <1 x>10(-6) mol/L. Cell lines that showed growth inhibition at approximately 1 x 10(-6) mol/L showed a G(1) cell cycle arrest and correlated with accumulation of p21 and p27 protein. The addition of rapamycin or cytotoxic agents enhanced growth inhibition. Dasatinib also caused the apoptosis of Mo7e cells expressing oncogenic Kit. CONCLUSIONS: Although all of the precise targets for dasatinib are not known, this multikinase inhibitor causes either growth arrest or apoptosis in molecularly heterogeneous AML. The addition of cytotoxic or targeted agents can enhance its effects.
Resumo:
Type I interferons (IFNs), mainly IFN-α/β play a crucial role in innate defense against viruses. In addition to their direct antiviral activity, type I IFNs have antitumoral and immunomodulatory effects. Although all cells are virtually able to induce IFN-α, the plasmacytoid dendritic cell (pDC) subset represents the ultimate producers of IFN-α as well as other proinflammatory cytokines. Due to the specific expression of TLR7 and TLR9 recognizing single-stranded (ss) RNA and unmethylated CpG motifs respectively, pDCs can secrete up to 1000 times more IFN-α than any cellular types. Additionally, it is well known that several cytokines including type I and II IFNs, Flt3-L, IL-4 and GM-CSF favor pDC-derived IFN-α responses to unmethylated CpG motifs. In a first step, we aimed to characterize and clarify the interactions of two porcine viruses with pDCs. The double-stranded DNA replicative forms of porcine circovirus type 2 (PCV2) were demonstrated to inhibit CpG-induced IFN- α by pDCs. Our study showed that none of the cytokines known to enhance pDC responsiveness can counter-regulate the PCV2-mediated inhibition of IFN-α induced by CpG, albeit IFN-γ significantly reduced the level of inhibition. Interestingly, the presence of IFN-γ enabled pDCs to induce IFN-α to low doses of PCV2. We also noted that after DNase treatment, PCV2 preparations were still able to stimulate pDCs. These data suggest that encapsulated viral ssDNA promotes the induction of IFN-α in pDCs treated with IFN-γ whereas free DNA, presumably as double-stranded forms, was responsible for inhibiting pDC responses. Regarding PRRSV, it has been reported that North American isolates did not induce and even inhibited IFN-α response in pDCs. However, PRRSV infection was also shown to lead to an induction of IFN-α in the serum and in the lungs suggesting that certain cells are responsive to the virus. Contrasting to previous reports we found that numerous PRRSV isolates directly induced IFN-α in pDCs. This response was still observed after UV-inactivation of viruses and required TLR7 signaling. The inhibition of CpG-induced IFN-α was weak and strain dependent, again contrasting with a previous report. We also observed that IFN-γ and IL-4 enhanced IFN-α response to two prototype strains, VR-2332 and LVP23. In summary, we demonstrated that both PCV2 and PRRSV promote IFN-α secretion in pDCs in vitro suggesting that IFN-α detected in PCV2- or PRRSV-infected animal might originate from pDCs. On the other hand, PRRSV replication is restricted to the macrophage (MΦ) lineage. These innate immune cells represent a heterogeneous population which can be induce to “classical” (M1) and “alternative” (M2) activated MΦ acquiring inflammatory or “wound-healing” functional properties, respectively. Nonetheless, little is known about the effect of polarization into M1 or M2 and the susceptibility of these cells to PRRSV. Thus, we examined the impact of cytokine on MΦ polarization into M1 or M2. Infections of these cells by several PRRSV isolates enabled the discrimination of PRRSV isolate in a genotype- and irulencedependent manner in M1 and IFN-β-activated MΦ. In contrast, the expression of PRRSV nucleocapsid in M2 or inactivated MΦ was indistinguishable among the PRRSV isolates tested. In the last part of my Thesis, we investigated the influence of three synthetic porcine cathelicidin peptides for their ability to deliver nucleic acid to pDCs. We reported that all cathelicidins tested can complex and quickly deliver nucleic acids resulting in IFN-α induction. Moreover, we show that the typical α- helical amphipathic conformation is required to mediate killing of bacteria but not for inducing IFN-α secretion by pDCs. Furthermore, we found that E.coli treated with one of these cathelicidins is able to induce significantly higher levels of IFN-α compared to a non-sense version of the peptide. These data suggest that cathelicidins could influence the immune response in a two-step process. First, these peptides target bacteria leading to cell lysis. In turn, cathelicidins form complexes and deliver extracellular microbial nucleic acids released into pDCs. These pDC-derived IFN-α responses could be of particular relevance in driving the adaptive immune responses against microbial infections.
Resumo:
Autologous stem cell transplantation (ASCT) is applied to consolidate first remission in patients with acute myeloid leukaemia (AML). However, outcome after ASCT widely varies among AML patients. We analyzed the prognostic significance of haematological recovery for neutrophils [absolute neutrophil count (ANC) >1·0 × 10(9) /l] and platelets (platelet count >20·0 × 10(9) /l), stratifying at day 20 after ASCT in 88 consecutive and homogeneously treated AML patients in first remission. We observed that patients with delayed recovery had better overall survival (OS; ANC: P < 0·0001 and platelets: P = 0·0062) and time to progression (TTP; ANC: P = 0·0003 and platelets: P = 0·0125). Delayed recovery was an independent marker for better OS and TTP in a multivariate analysis including age, gender, number of transfused CD34+ cells, cytogenetics, FLT3-internal tandem duplication and NPM1 mutation. Our results suggest that delayed neutrophil and platelet recovery is associated with longer OS and TTP in AML patients consolidated with ASCT in first remission.
Resumo:
Therapeutic resistance remains the principal problem in acute myeloid leukemia (AML). We used area under receiver-operating characteristic curves (AUCs) to quantify our ability to predict therapeutic resistance in individual patients, where AUC=1.0 denotes perfect prediction and AUC=0.5 denotes a coin flip, using data from 4601 patients with newly diagnosed AML given induction therapy with 3+7 or more intense standard regimens in UK Medical Research Council/National Cancer Research Institute, Dutch–Belgian Cooperative Trial Group for Hematology/Oncology/Swiss Group for Clinical Cancer Research, US cooperative group SWOG and MD Anderson Cancer Center studies. Age, performance status, white blood cell count, secondary disease, cytogenetic risk and FLT3-ITD/NPM1 mutation status were each independently associated with failure to achieve complete remission despite no early death (‘primary refractoriness’). However, the AUC of a bootstrap-corrected multivariable model predicting this outcome was only 0.78, indicating only fair predictive ability. Removal of FLT3-ITD and NPM1 information only slightly decreased the AUC (0.76). Prediction of resistance, defined as primary refractoriness or short relapse-free survival, was even more difficult. Our limited ability to forecast resistance based on routinely available pretreatment covariates provides a rationale for continued randomization between standard and new therapies and supports further examination of genetic and posttreatment data to optimize resistance prediction in AML.
Resumo:
The goal of this study was to identify the circulating cell that is the immediate precursor of tissue macrophages. ROSA 26 marrow mononuclear cells (containing the β-geo transgene that encodes β-galactosidase and neomycin resistance activities) were cultured in the presence of macrophage colony-stimulating factor and flt3 Ligand for 6 days to generate monocytic cells at all stages of maturation. Expanded monocyte cells (EMC), the immature (ER-MP12+) and more mature (ER-MP20+) subpopulations, were transplanted into irradiated B6/129 F2 mice. β-gal staining of tissue sections from animals 15 min after transplantation demonstrated that the donor cells landed randomly. By 3 h, donor cells in lung and liver were more frequent in animals transplanted with ER-MP20+ (more mature) EMC than in animals transplanted with unseparated EMC or fresh marrow mononuclear cells, a pattern that persisted at 3 and 7 days. At 3 days, donor cells were found in spleen, liver, lung, and brain (rarely) as clusters as well as individual cells. By 7 and 14 days, the clusters had increased in size, and the cells expressed the macrophage antigen F4/80, suggesting that further replication and differentiation had occurred. PCR for the neogene was used to quantitate the amount of donor DNA in tissues from transplanted animals and confirmed that ER-MP20+ EMC preferentially engrafted. These data demonstrate that a mature monocytic cell gives rise to tissue macrophages. Because these cells can be expanded and manipulated in vitro, they may be a suitable target population for gene therapy of lysosomal storage diseases.
Resumo:
Elucidation of mechanisms that regulate hematopoietic stem cell self-renewal and differentiation would be facilitated by the identification of defined culture conditions that allow these cells to be amplified. We now demonstrate a significant net increase (3-fold, P < 0.001) in vitro of cells that are individually able to permanently and competitively reconstitute the lymphoid and myeloid systems of syngeneic recipient mice when Sca-1+lin− adult marrow cells are incubated for 10 days in serum-free medium with interleukin 11, flt3-ligand, and Steel factor. Moreover, the culture-derived repopulating cells continued to expand their numbers in the primary hosts at the same rate seen in recipients of noncultured stem cells. In the expansion cultures, long-term culture-initiating cells increased 7- ± 2-fold, myeloid colony-forming cells increased 140- ± 36-fold, and total nucleated cells increased 230- ± 62-fold. Twenty-seven of 100 cultures initiated with 15 Sca-1+lin− marrow cells were found to contain transplantable stem cells 10 days later. This frequency of positive cultures is the same as the frequency of transplantable stem cells in the original input suspension, suggesting that most had undergone at least one self-renewal division in vitro. No expansion of stem cells was seen when Sca-1+TER119− CD34+ day 14.5 fetal liver cells were cultured under the same conditions. These findings set the stage for further investigations of the mechanisms by which cytokine stimulation may elicit different outcomes in mitotically activated hematopoietic stem cells during ontogeny and in the adult.
Resumo:
Previous studies have demonstrated hematopoietic stem cell amplification in vitro after the activation of three cell-surface receptors: flt3/flk2, c-kit, and gp130. We now show flt3-ligand and Steel factor alone will stimulate >85% of c-kit+Sca-1+lin− adult mouse bone marrow cells to proliferate in single-cell serum-free cultures, but concomitant retention of their stem cell activity requires additional exposure to a ligand that will activate gp130. Moreover, this response is restricted to a narrow range of gp130-activating ligand concentrations, above and below which hematopoietic stem cell activity is lost. These findings indicate a unique contribution of gp130 signaling to the maintenance of hematopoietic stem cell function when these cells are stimulated to divide with additional differential effects dictated by the intensity of gp130 activation.