923 resultados para FINGERPRINT VERIFICATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The recently proposed data-driven background dataset refinement technique provides a means of selecting an informative background for support vector machine (SVM)-based speaker verification systems. This paper investigates the characteristics of the impostor examples in such highly-informative background datasets. Data-driven dataset refinement individually evaluates the suitability of candidate impostor examples for the SVM background prior to selecting the highest-ranking examples as a refined background dataset. Further, the characteristics of the refined dataset were analysed to investigate the desired traits of an informative SVM background. The most informative examples of the refined dataset were found to consist of large amounts of active speech and distinctive language characteristics. The data-driven refinement technique was shown to filter the set of candidate impostor examples to produce a more disperse representation of the impostor population in the SVM kernel space, thereby reducing the number of redundant and less-informative examples in the background dataset. Furthermore, data-driven refinement was shown to provide performance gains when applied to the difficult task of refining a small candidate dataset that was mis-matched to the evaluation conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study assesses the recently proposed data-driven background dataset refinement technique for speaker verification using alternate SVM feature sets to the GMM supervector features for which it was originally designed. The performance improvements brought about in each trialled SVM configuration demonstrate the versatility of background dataset refinement. This work also extends on the originally proposed technique to exploit support vector coefficients as an impostor suitability metric in the data-driven selection process. Using support vector coefficients improved the performance of the refined datasets in the evaluation of unseen data. Further, attempts are made to exploit the differences in impostor example suitability measures from varying features spaces to provide added robustness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main goal of this research is to design an efficient compression al~ gorithm for fingerprint images. The wavelet transform technique is the principal tool used to reduce interpixel redundancies and to obtain a parsimonious representation for these images. A specific fixed decomposition structure is designed to be used by the wavelet packet in order to save on the computation, transmission, and storage costs. This decomposition structure is based on analysis of information packing performance of several decompositions, two-dimensional power spectral density, effect of each frequency band on the reconstructed image, and the human visual sensitivities. This fixed structure is found to provide the "most" suitable representation for fingerprints, according to the chosen criteria. Different compression techniques are used for different subbands, based on their observed statistics. The decision is based on the effect of each subband on the reconstructed image according to the mean square criteria as well as the sensitivities in human vision. To design an efficient quantization algorithm, a precise model for distribution of the wavelet coefficients is developed. The model is based on the generalized Gaussian distribution. A least squares algorithm on a nonlinear function of the distribution model shape parameter is formulated to estimate the model parameters. A noise shaping bit allocation procedure is then used to assign the bit rate among subbands. To obtain high compression ratios, vector quantization is used. In this work, the lattice vector quantization (LVQ) is chosen because of its superior performance over other types of vector quantizers. The structure of a lattice quantizer is determined by its parameters known as truncation level and scaling factor. In lattice-based compression algorithms reported in the literature the lattice structure is commonly predetermined leading to a nonoptimized quantization approach. In this research, a new technique for determining the lattice parameters is proposed. In the lattice structure design, no assumption about the lattice parameters is made and no training and multi-quantizing is required. The design is based on minimizing the quantization distortion by adapting to the statistical characteristics of the source in each subimage. 11 Abstract Abstract Since LVQ is a multidimensional generalization of uniform quantizers, it produces minimum distortion for inputs with uniform distributions. In order to take advantage of the properties of LVQ and its fast implementation, while considering the i.i.d. nonuniform distribution of wavelet coefficients, the piecewise-uniform pyramid LVQ algorithm is proposed. The proposed algorithm quantizes almost all of source vectors without the need to project these on the lattice outermost shell, while it properly maintains a small codebook size. It also resolves the wedge region problem commonly encountered with sharply distributed random sources. These represent some of the drawbacks of the algorithm proposed by Barlaud [26). The proposed algorithm handles all types of lattices, not only the cubic lattices, as opposed to the algorithms developed by Fischer [29) and Jeong [42). Furthermore, no training and multiquantizing (to determine lattice parameters) is required, as opposed to Powell's algorithm [78). For coefficients with high-frequency content, the positive-negative mean algorithm is proposed to improve the resolution of reconstructed images. For coefficients with low-frequency content, a lossless predictive compression scheme is used to preserve the quality of reconstructed images. A method to reduce bit requirements of necessary side information is also introduced. Lossless entropy coding techniques are subsequently used to remove coding redundancy. The algorithms result in high quality reconstructed images with better compression ratios than other available algorithms. To evaluate the proposed algorithms their objective and subjective performance comparisons with other available techniques are presented. The quality of the reconstructed images is important for a reliable identification. Enhancement and feature extraction on the reconstructed images are also investigated in this research. A structural-based feature extraction algorithm is proposed in which the unique properties of fingerprint textures are used to enhance the images and improve the fidelity of their characteristic features. The ridges are extracted from enhanced grey-level foreground areas based on the local ridge dominant directions. The proposed ridge extraction algorithm, properly preserves the natural shape of grey-level ridges as well as precise locations of the features, as opposed to the ridge extraction algorithm in [81). Furthermore, it is fast and operates only on foreground regions, as opposed to the adaptive floating average thresholding process in [68). Spurious features are subsequently eliminated using the proposed post-processing scheme.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cascading appearance-based (CAB) feature extraction technique has established itself as the state-of-the-art in extracting dynamic visual speech features for speech recognition. In this paper, we will focus on investigating the effectiveness of this technique for the related speaker verification application. By investigating the speaker verification ability of each stage of the cascade we will demonstrate that the same steps taken to reduce static speaker and environmental information for the visual speech recognition application also provide similar improvements for visual speaker recognition. A further study is conducted comparing synchronous HMM (SHMM) based fusion of CAB visual features and traditional perceptual linear predictive (PLP) acoustic features to show that higher complexity inherit in the SHMM approach does not appear to provide any improvement in the final audio-visual speaker verification system over simpler utterance level score fusion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents an extended study on the implementation of support vector machine(SVM) based speaker verification in systems that employ continuous progressive model adaptation using the weight-based factor analysis model. The weight-based factor analysis model compensates for session variations in unsupervised scenarios by incorporating trial confidence measures in the general statistics used in the inter-session variability modelling process. Employing weight-based factor analysis in Gaussian mixture models (GMM) was recently found to provide significant performance gains to unsupervised classification. Further improvements in performance were found through the integration of SVM-based classification in the system by means of GMM supervectors. This study focuses particularly on the way in which a client is represented in the SVM kernel space using single and multiple target supervectors. Experimental results indicate that training client SVMs using a single target supervector maximises performance while exhibiting a certain robustness to the inclusion of impostor training data in the model. Furthermore, the inclusion of low-scoring target trials in the adaptation process is investigated where they were found to significantly aid performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This document outlines the system submitted by the Speech and Audio Research Laboratory at the Queensland University of Technology (QUT) for the Speaker Identity Verification: Application task of EVALITA 2009. This competitive submission consisted of a score-level fusion of three component systems; a joint-factor analysis GMM system and two SVM systems using GLDS and GMM supervector kernels. Development evaluation and post-submission results are presented in this study, demonstrating the effectiveness of this fused system approach. This study highlights the challenges associated with system calibration from limited development data and that mismatch between training and testing conditions continues to be a major source of error in speaker verification technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gaussian mixture models (GMMs) have become an established means of modeling feature distributions in speaker recognition systems. It is useful for experimentation and practical implementation purposes to develop and test these models in an efficient manner particularly when computational resources are limited. A method of combining vector quantization (VQ) with single multi-dimensional Gaussians is proposed to rapidly generate a robust model approximation to the Gaussian mixture model. A fast method of testing these systems is also proposed and implemented. Results on the NIST 1996 Speaker Recognition Database suggest comparable and in some cases an improved verification performance to the traditional GMM based analysis scheme. In addition, previous research for the task of speaker identification indicated a similar system perfomance between the VQ Gaussian based technique and GMMs

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the use of lip information, in conjunction with speech information, for robust speaker verification in the presence of background noise. It has been previously shown in our own work, and in the work of others, that features extracted from a speaker's moving lips hold speaker dependencies which are complementary with speech features. We demonstrate that the fusion of lip and speech information allows for a highly robust speaker verification system which outperforms the performance of either sub-system. We present a new technique for determining the weighting to be applied to each modality so as to optimize the performance of the fused system. Given a correct weighting, lip information is shown to be highly effective for reducing the false acceptance and false rejection error rates in the presence of background noise

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investigates the use of lip information, in conjunction with speech information, for robust speaker verification in the presence of background noise. We have previously shown (Int. Conf. on Acoustics, Speech and Signal Proc., vol. 6, pp. 3693-3696, May 1998) that features extracted from a speaker's moving lips hold speaker dependencies which are complementary with speech features. We demonstrate that the fusion of lip and speech information allows for a highly robust speaker verification system which outperforms either subsystem individually. We present a new technique for determining the weighting to be applied to each modality so as to optimize the performance of the fused system. Given a correct weighting, lip information is shown to be highly effective for reducing the false acceptance and false rejection error rates in the presence of background noise

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Radiotherapy is a cancer treatment modality in which a dose of ionising radiation is delivered to a tumour. The accurate calculation of the dose to the patient is very important in the design of an effective therapeutic strategy. This study aimed to systematically examine the accuracy of the radiotherapy dose calculations performed by clinical treatment planning systems by comparison againstMonte Carlo simulations of the treatment delivery. A suite of software tools known as MCDTK (Monte Carlo DICOM ToolKit) was developed for this purpose, and is capable of: • Importing DICOM-format radiotherapy treatment plans and producing Monte Carlo simulation input files (allowing simple simulation of complex treatments), and calibrating the results; • Analysing the predicted doses of and deviations between the Monte Carlo simulation results and treatment planning system calculations in regions of interest (tumours and organs-at-risk) and generating dose-volume histograms, so that conformity with dose prescriptions can be evaluated. The code has been tested against various treatment planning systems, linear acceleratormodels and treatment complexities. Six clinical head and neck cancer treatments were simulated and the results analysed using this software. The deviations were greatest where the treatment volume encompassed tissues on both sides of an air cavity. This was likely due to the method the planning system used to model low density media.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The quality assurance of stereotactic radiotherapy and radiosurgery treatments requires the use of small-field dose measurements that can be experimentally challenging. This study used Monte Carlo simulations to establish that PAGAT dosimetry gel can be used to provide accurate, high resolution, three-dimensional dose measurements of stereotactic radiotherapy fields. A small cylindrical container (4 cm height, 4.2 cm diameter) was filled with PAGAT gel, placed in the parietal region inside a CIRS head phantom, and irradiated with a 12 field stereotactic radiotherapy plan. The resulting three-dimensional dose measurement was read out using an optical CT scanner and compared with the treatment planning prediction of the dose delivered to the gel during the treatment. A BEAMnrc DOSXYZnrc simulation of this treatment was completed, to provide a standard against which the accuracy of the gel measurement could be gauged. The three dimensional dose distributions obtained from Monte Carlo and from the gel measurement were found to be in better agreement with each other than with the dose distribution provided by the treatment planning system's pencil beam calculation. Both sets of data showed close agreement with the treatment planning system's dose distribution through the centre of the irradiated volume and substantial disagreement with the treatment planning system at the penumbrae. The Monte Carlo calculations and gel measurements both indicated that the treated volume was up to 3 mm narrower, with steeper penumbrae and more variable out-of-field dose, than predicted by the treatment planning system. The Monte Carlo simulations allowed the accuracy of the PAGAT gel dosimeter to be verified in this case, allowing PAGAT gel to be utilised in the measurement of dose from stereotactic and other radiotherapy treatments, with greater confidence in the future.