991 resultados para FIELD PRESERVATION
Resumo:
The purpose of this thesis was to complete an analysis of the work and practices of the community organizations of Borgne, Haiti. While the work of several community organizations were examined, research specifically focused on the community’s tree-planting project. Given the current state of Haiti’s environment and the historic record of development efforts in Haiti, this project represents a unique model that may have larger implications on the way in trees are planted throughout Haiti. Field research was completed on site in Borgne in the summer months of 2010. The primary methods employed in data collection were Participatory Action Research and semi-structured interviewing.
Resumo:
In recent years, there has been an enormous growth of location-aware devices, such as GPS embedded cell phones, mobile sensors and radio-frequency identification tags. The age of combining sensing, processing and communication in one device, gives rise to a vast number of applications leading to endless possibilities and a realization of mobile Wireless Sensor Network (mWSN) applications. As computing, sensing and communication become more ubiquitous, trajectory privacy becomes a critical piece of information and an important factor for commercial success. While on the move, sensor nodes continuously transmit data streams of sensed values and spatiotemporal information, known as ``trajectory information". If adversaries can intercept this information, they can monitor the trajectory path and capture the location of the source node. ^ This research stems from the recognition that the wide applicability of mWSNs will remain elusive unless a trajectory privacy preservation mechanism is developed. The outcome seeks to lay a firm foundation in the field of trajectory privacy preservation in mWSNs against external and internal trajectory privacy attacks. First, to prevent external attacks, we particularly investigated a context-based trajectory privacy-aware routing protocol to prevent the eavesdropping attack. Traditional shortest-path oriented routing algorithms give adversaries the possibility to locate the target node in a certain area. We designed the novel privacy-aware routing phase and utilized the trajectory dissimilarity between mobile nodes to mislead adversaries about the location where the message started its journey. Second, to detect internal attacks, we developed a software-based attestation solution to detect compromised nodes. We created the dynamic attestation node chain among neighboring nodes to examine the memory checksum of suspicious nodes. The computation time for memory traversal had been improved compared to the previous work. Finally, we revisited the trust issue in trajectory privacy preservation mechanism designs. We used Bayesian game theory to model and analyze cooperative, selfish and malicious nodes' behaviors in trajectory privacy preservation activities.^
Resumo:
Pavements tend to deteriorate with time under repeated traffic and/or environmental loading. By detecting pavement distresses and damage early enough, it is possible for transportation agencies to develop more effective pavement maintenance and rehabilitation programs and thereby achieve significant cost and time savings. The structural health monitoring (SHM) concept can be considered as a systematic method for assessing the structural state of pavement infrastructure systems and documenting their condition. Over the past several years, this process has traditionally been accomplished through the use of wired sensors embedded in bridge and highway pavement. However, the use of wired sensors has limitations for long-term SHM and presents other associated cost and safety concerns. Recently, micro-electromechanical sensors and systems (MEMS) and nano-electromechanical systems (NEMS) have emerged as advanced/smart-sensing technologies with potential for cost-effective and long-term SHM. This two-pronged study evaluated the performance of commercial off-the-shelf (COTS) MEMS sensors embedded in concrete pavement (Final Report Volume I) and developed a wireless MEMS multifunctional sensor system for health monitoring of concrete pavement (Final Report Volume II).
Resumo:
In the last years, thanks to the improvement in the prognosis of cancer patients, a growing attention has been given to the fertility issues. International guidelines on fertility preservation in cancer patients recommend that physicians discuss, as early as possible, with all patients of reproductive age their risk of infertility from the disease and/or treatment and their interest in having children after cancer, and help with informed fertility preservation decisions. As recommended by the American Society of Clinical Oncology and the European Society for Medical Oncology, sperm cryopreservation and embryo/oocyte cryopreservation are standard strategies for fertility preservations in male and female patients, respectively; other strategies (e.g. pharmacological protection of the gonads and gonadal tissue cryopreservation) are considered experimental techniques. However, since then, new data have become available, and several issues in this field are still controversial and should be addressed by both patients and their treating physicians. In April 2015, physicians with expertise in the field of fertility preservation in cancer patients from several European countries were invited in Genova (Italy) to participate in a workshop on the topic of "cancer and fertility preservation". A total of ten controversial issues were discussed at the conference. Experts were asked to present an up-to-date review of the literature published on these topics and the presentation of own unpublished data was encouraged. On the basis of the data presented, as well as the expertise of the invited speakers, a total of ten recommendations were discussed and prepared with the aim to help physicians in counseling their young patients interested in fertility preservation. Although there is a great interest in this field, due to the lack of large prospective cohort studies and randomized trials on these topics, the level of evidence is not higher than 3 for most of the recommendations highlighting the need of further research efforts in many areas of this field. The participation to the ongoing registries and prospective studies is crucial to acquire more robust information in order to provide evidence-based recommendations.
Resumo:
This article describes the goals and activities for the first field season of The Herculaneum Graffiti Project. Our project fo-cuses on documenting and digitizing to make more broadly accessible the first-century handwritten wall-inscriptions, also called graffiti, in Herculaneum. Following an overview of the presence of ancient graffiti in Herculaneum, this report details the methodology we used to locate and document the inscriptions and the preservation status of ancient graffiti in each insula, or city-block, of the excavations. We further describe the preliminary results of the project’s documentation efforts. We are currently studying, processing, and digitizing these inscriptions and contributing them for inclusion in the Epigraphic Database Roma and EAGLE, the Europeana network of Ancient Greek and Latin Epigraphy. We conclude with a brief mention of development of The Ancient Graffiti Project, the digital resource and search engine devoted to ancient handwritten inscriptions.
Resumo:
In recent years, there has been an enormous growth of location-aware devices, such as GPS embedded cell phones, mobile sensors and radio-frequency identification tags. The age of combining sensing, processing and communication in one device, gives rise to a vast number of applications leading to endless possibilities and a realization of mobile Wireless Sensor Network (mWSN) applications. As computing, sensing and communication become more ubiquitous, trajectory privacy becomes a critical piece of information and an important factor for commercial success. While on the move, sensor nodes continuously transmit data streams of sensed values and spatiotemporal information, known as ``trajectory information". If adversaries can intercept this information, they can monitor the trajectory path and capture the location of the source node. This research stems from the recognition that the wide applicability of mWSNs will remain elusive unless a trajectory privacy preservation mechanism is developed. The outcome seeks to lay a firm foundation in the field of trajectory privacy preservation in mWSNs against external and internal trajectory privacy attacks. First, to prevent external attacks, we particularly investigated a context-based trajectory privacy-aware routing protocol to prevent the eavesdropping attack. Traditional shortest-path oriented routing algorithms give adversaries the possibility to locate the target node in a certain area. We designed the novel privacy-aware routing phase and utilized the trajectory dissimilarity between mobile nodes to mislead adversaries about the location where the message started its journey. Second, to detect internal attacks, we developed a software-based attestation solution to detect compromised nodes. We created the dynamic attestation node chain among neighboring nodes to examine the memory checksum of suspicious nodes. The computation time for memory traversal had been improved compared to the previous work. Finally, we revisited the trust issue in trajectory privacy preservation mechanism designs. We used Bayesian game theory to model and analyze cooperative, selfish and malicious nodes' behaviors in trajectory privacy preservation activities.