900 resultados para FIELD METABOLIC-RATES
Resumo:
The vagus is clearly of primary importance in the regulation of reptilian cardiorespiratory systems. Vagal control of pulmonary blood flow and cardiac shunts provides reptiles with an additional means of regulating arterial oxygen levels that is not present in endothermic vertebrates (birds and mammals). Within a given species, there exists a clear correlation between withdrawal of vagal tone on the cardiovascular system and elevated metabolic rate. Undisturbed and resting reptiles are normally characterised by high vagal tone, low pulmonary blood flow and large right-left (R-L) cardiac shunts. The low oxygen levels that result from the large R-L shunt may serve to regulate metabolism. However, when metabolism is increased by temperature, exercise or digestion, the R-L cardiac shunt is reduced, which serves to increase oxygen delivery. This response is partially elicit ed by reduction of vagal tone. Interspecies comparisons reveal a similar pattern. Thus, species that are able to sustain the highest metabolic rates possess the highest degree of anatomical ventricular separation and, therefore, less cardiac shunting. It is interesting to note that when cardiac shunts occur in mammals, due for example to developmental defects, they are associated with reduced maximal metabolic rates and impaired exercise tolerance. It appears, therefore, that full separation of ventricular blood flows was a prerequisite for the evolution of high aerobic metabolic rates and exercise stamina in mammals and birds.
Resumo:
In this article, we review intraspecific studies of basal metabolic rate (BMR) that address the correlation between diet quality and BMR. The food-habit hypothesis stands as one of the most striking and often-mentioned interspecific patterns to emerge from studies of endothermic energetics. Our main emphasis is the explicit empirical comparison of predictions derived from interspecific studies with data gathered from within-species studies in order to explore the mechanisms and functional significance of the putative adaptive responses encapsulated by the food-habit hypothesis. We suggest that, in addition to concentrating on the relationship among diet quality, internal morphology, and BMR, new studies should also attempt to unravel alternative mechanisms that shape the interaction between diet and BMR, such as enzymatic plasticity, and the use of energy-saving mechanisms, such as torpor. Another avenue for future study is the measurement of the effects of diet quality on other components of the energy budget, such as maximum thermogenic and sustainable metabolic rates. It is possible that the effects of diet quality operate on such components rather than directly on BMR, which might then push or pull along changes in these traits. Results from intraspecific studies suggest that the factors responsible for the association between diet and BMR at an ecological timescale might not be the same as those that promoted the evolution of this correlation. Further analyses should consider how much of a role the proximate and ultimate processes have played in the evolution of BMR.
Resumo:
Aside from the pervasive effects of body mass, much controversy exists as to what factors account for interspecific variation in basal metabolic rates (BMR) of mammals; however, both diet and phylogeny have been strongly implicated. We examined variation in BMR within the New World bat family Phyllostomidae, which shows the largest diversity of food habits among mammalian families, including frugivorous, nectarivorous, insectivorous, carnivorous and blood-eating species. For 27 species, diet was taken from the literature and BMR was either measured on animals captured in Brazil or extracted from the literature. Conventional (nonphylogenetic) analysis of covariance (ANCOVA), with body mass as the covariate, was first used to test the effects of diet on BMR. In this analysis, which assumes that all species evolved simultaneously from a single ancestor (i.e., a star phylogeny), diet exerted a strong effect on mass-in-dependent BMR: nectarivorous bats showed higher mass-independent BMR than other bats feeding on fruits, insects or blood. In phylogenetic ANCOVAs via Monte Carlo computer simulation, which assume that species are part of a branching hierarchical phylogeny, no statistically significant effect of diet on BMR was observed. Hence, results of the nonphylogenetic analysis were misleading because the critical values for testing the effect of diet were underestimated. However, in this sample of bats, diet is perfectly confounded with phylogeny, because the four dietary categories represent four separate subclades, which greatly reduces statistical power to detect a diet (= subclade) effect. But even if diet did appear to exert an influence on BMR in this sample of bats, it would not be logically possible to separate this effect from the possibility that the dietary categories differ for some other reason (i.e., another synapomorphy of one or more of the subclades). Examples such as this highlight the importance of considering phylogenetic relationships when designing new comparative studies, as well as when analyzing existing data sets. We also discuss some possible reasons why BMR may not coadapt with diet. © by Urban & Fischer Verlag.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
White-nose syndrome (WNS) is a disease that has caused the mass mortality of hibernating bat species. Since its first discovery in the winter of 2006-2007, an estimated five million bats or more have been killed. Although infection with Pseudogymnoascus destructans (Pd, the causative agent of WNS) does not always result in death, bats that survive Pd infection may experience fitness consequences. To understand the physiological consequences of WNS, I measured reproductive rates of free-ranging hibernating bat species of the Northeastern United States. In addition, captive little brown myotis (Myotis lucifugus) bats that were infected by Pd but survived (¿WNS survivors¿) and uninfected bats were studied in order to understand the potential consequences (e.g., lower reproductive rates, decreased ability to heal wounds, degradation of wing tissue, and altered metabolic rates) of surviving WNS. No differences in reproductive rates were found between WNS-survivors and uninfected bats in either the field or in captivity. In addition, wound healing was not affected by Pd infection. However, wing tissue degradation was worse for little brown myotis 19 days post-hibernation, and mass specific metabolic rate (MSMR) was significantly higher for those infected with Pd 22 days post-hibernation. While it is clear that these consequences are a direct result of Pd infection, further research investigating the long-term consequences for both mothers and pups is necessary.
Resumo:
This study compared Pundamilia nyererei and Pundamilia pundamilia males in routine metabolic rate (RR ) and in the metabolic costs males pay during territorial interactions (active metabolic rate, RA ). Pundamilia nyererei and P. pundamilia males housed in social isolation did not differ in RR . In contrast to expectation, however, P. nyererei males used less oxygen than P. pundamilia males, for a given mass and level of agonistic activity. This increased metabolic efficiency may be an adaptation to limit the metabolic cost that P. nyererei males pay for their higher rate of aggressiveness compared to P. pundamilia males. Thus, the divergence between the species in agonistic behaviour is correlated with metabolic differentiation. Such concerted divergence in physiology and behaviour might be widespread in the dramatically diverse cichlid radiations in East African lakes and may be an important factor in the remarkably rapid speciation of these fishes. The results did not support the hypothesis that higher metabolic rates caused a physiological cost to P. nyererei males that would offset their dominance advantage.
Resumo:
Respiration rates and electron transport system (ETS) activities were measured in dominant copepod species from the northern Benguela upwelling system in January-February 2011 to assess the accuracy of the ETS assay in predicting in vivo respiration rates. Individual respiration rates varied from 0.06 to 1.60 µL O2/h/ind, while ETS activities converted to oxygen consumption ranged from 0.14 to 4.46 µL O2/h/ind. ETS activities were significantly correlated with respiration rates (r**2 = 0.79, p = 0.0001). R:ETS ratios were lowest in slow-moving Eucalanidae (0.11) and highest in diapausing Calanoides carinatus copepodids CV (0.76) while fast-moving copepods showed intermediate R:ETS (0.23-0.37). 82% of the variance of respiration rates could be explained by differences in dry mass, temperature and the activity level of different copepod species. Three regression equations were derived to calculate respiration rates for diapausing, slow- and fast-moving copepods, respectively, based on parameters such as body mass and temperature. Thus, knowledge about the activity level and behavioral characteristics of copepod species can significantly increase the predictive accuracy of metabolic models, which will help to better understand and quantify the impact of copepods on nutrient and carbon fluxes in marine ecosystems.
Resumo:
Responses by marine species to ocean acidification (OA) have recently been shown to be modulated by external factors including temperature, food supply and salinity. However the role of a fundamental biological parameter relevant to all organisms, that of body size, in governing responses to multiple stressors has been almost entirely overlooked. Recent consensus suggests allometric scaling of metabolism with body size differs between species, the commonly cited 'universal' mass scaling exponent (b) of ¾ representing an average of exponents that naturally vary. One model, the Metabolic-Level Boundaries hypothesis, provides a testable prediction: that b will decrease within species under increasing temperature. However, no previous studies have examined how metabolic scaling may be directly affected by OA. We acclimated a wide body-mass range of three common NE Atlantic echinoderms (the sea star Asterias rubens, the brittlestars Ophiothrix fragilis and Amphiura filiformis) to two levels of pCO2 and three temperatures, and metabolic rates were determined using closed-chamber respirometry. The results show that contrary to some models these echinoderm species possess a notable degree of stability in metabolic scaling under different abiotic conditions; the mass scaling exponent (b) varied in value between species, but not within species under different conditions. Additionally, we found no effect of OA on metabolic rates in any species. These data suggest responses to abiotic stressors are not modulated by body size in these species, as reflected in the stability of the metabolic scaling relationship. Such equivalence in response across ontogenetic size ranges has important implications for the stability of ecological food webs.
Resumo:
Ocean acidification and warming are expected to threaten the persistence of tropical coral reef ecosystems. As coral reefs face multiple stressors, the distribution and abundance of corals will depend on the successful dispersal and settlement of coral larvae under changing environmental conditions. To explore this scenario, we used metabolic rate, at holobiont and molecular levels, as an index for assessing the physiological plasticity of Pocillopora damicornis larvae from this site to conditions of ocean acidity and warming. Larvae were incubated for 6 hours in seawater containing combinations of CO2 concentration (450 and 950 µatm) and temperature (28 and 30°C). Rates of larval oxygen consumption were higher at elevated temperatures. In contrast, high CO2 levels elicited depressed metabolic rates, especially for larvae released later in the spawning period. Rates of citrate synthase, a rate-limiting enzyme in aerobic metabolism, suggested a biochemical limit for increasing oxidative capacity in coral larvae in a warming, acidifying ocean. Biological responses were also compared between larvae released from adult colonies on the same day (cohorts). The metabolic physiology of Pocillopora damicornis larvae varied significantly by day of release. Additionally, we used environmental data collected on a reef in Moorea, French Polynesia to provide information about what adult corals and larvae may currently experience in the field. An autonomous pH sensor provided a continuous time series of pH on the natal fringing reef. In February/March, 2011, pH values averaged 8.075±0.023. Our results suggest that without adaptation or acclimatization, only a portion of naïve Pocillopora damicornis larvae may have suitable metabolic phenotypes for maintaining function and fitness in an end-of-the century ocean.
Resumo:
Body-size and temperature are the major factors explaining metabolic rate, and the additional factor of pH is a major driver at the biochemical level. These three factors have frequently been found to interact, complicating the formulation of broad models predicting metabolic rates and hence ecological functioning. In this first study of the effects of warming and ocean acidification, and their potential interaction, on metabolic rate across a broad body-size range (two-to-three orders of magnitude difference in body mass) we addressed the impact of climate change on the sea urchin Heliocidaris erythrogramma in context with climate projections for east Australia, an ocean warming hotspot. Urchins were gradually introduced to two temperatures (18 and 23 °C) and two pH (7.5 and 8.0), and maintained for two months. That a new physiological steady-state had been reached, otherwise know as acclimation, was validated through identical experimental trials separated by several weeks. The relationship between body-size, temperature and acidification on the metabolic rate of H. erythrogramma was strikingly stable. Both stressors caused increases in metabolic rate; 20% for temperature and 19% for pH. Combined effects were additive; a 44% increase in metabolism. Body-size had a highly stable relationship with metabolic rate regardless of temperature or pH. None of these diverse drivers of metabolism interacted or modulated the effects of the others, highlighting the partitioned nature of how each influences metabolic rate, and the importance of achieving a full acclimation state. Despite these increases in energetic demand there was very limited capacity for compensatory modulating of feeding rate; food consumption increased only in the very smallest specimens, and only in response to temperature, and not pH. Our data show that warming, acidification and body-size all substantially affect metabolism and are highly consistent and partitioned in their effects, and for H. erythrogramma near-future climate change will incur a substantial energetic cost.
Resumo:
A computational model is presented that can be used as a tool in the design of safer chemicals. This model predicts the rate of hydrogen-atom abstraction by cytochrome P450 enzymes. Excellent correlations between biotransformation rates and the calculated activation energies (delta Hact) of the cytochrome P450-mediated hydrogen-atom abstractions were obtained for the in vitro biotransformation of six halogenated alkanes (1-fluoro-1,1,2,2-tetrachloroethane, 1,1-difluoro-1,2,2-trichloroethane, 1,1,1-trifluro-2,2-dichloroethane, 1,1,1,2-tetrafluoro-2-chloroethane, 1,1,1,2,2,-pentafluoroethane, and 2-bromo-2-chloro-1,1,1-trifluoroethane) with both rat and human enzyme preparations: In(rate, rat liver microsomes) = 44.99 - 1.79(delta Hact), r2 = 0.86; In(rate, human CYP2E1) = 46.99 - 1.77(delta Hact), r2 = 0.97 (rates are in nmol of product per min per nmol of cytochrome P450 and energies are in kcal/mol). Correlations were also obtained for five inhalation anesthetics (enflurane, sevoflurane, desflurane, methoxyflurane, and isoflurane) for both in vivo and in vitro metabolism by humans: In[F(-)]peak plasma = 42.87 - 1.57(delta Hact), r2 = 0.86. To our knowledge, these are the first in vivo human metabolic rates to be quantitatively predicted. Furthermore, this is one of the first examples where computational predictions and in vivo and in vitro data have been shown to agree in any species. The model presented herein provides an archetype for the methodology that may be used in the future design of safer chemicals, particularly hydrochlorofluorocarbons and inhalation anesthetics.
Resumo:
We present the first high-resolution organic carbon mass accumulation rate (MAR) data set for the Eocene equatorial Pacific upwelling region, from Sites 1218 and 1219 of the Ocean Drilling Program. A maximum Corg MAR anomaly appears at 41 Ma and corresponds to a high carbonate accumulation event (CAE). Independent evidence suggests that this event (CAE-3) was a time of rapid cooling. Throughout the Eocene, organic carbon burial fluxes were an order of magnitude lower than fluxes recorded for the Holocene. In contrast, the expected organic carbon flux, calculated from the biogenic barium concentrations for these sites, is roughly equal to modern. A sedimentation anomaly appears at 41 Ma, when both the measured and the expected organic carbon MAR increases by a factor of two-three relative to the background Eocene fluxes. The rain of estimated Corg and barium from the euphotic zone to the sediments increased by factors of three and six, respectively. We suggest that the discrepancy between the expected and measured Corg in the sediments is a direct consequence of the increased metabolic rates of all organisms throughout the Eocene oceans and sediments. This hypothesis is supported by recent work in ecology and biochemical kinetics that recognizes the fundamental basis of ecology as following from the laws of thermodynamics. This dependence is now elucidated as the Universal Temperature Dependence (UTD) "law" of metabolism and can be applied to all organisms over their biologically relevant temperature range. The general pattern of organic carbon and barium deposition throughout the Eocene is consistent with the UTD theory. In particular, the anomaly at 41 Ma (CAE-3) is associated with rapid cooling, an event that triggered slower metabolic rates for all organisms, slower recycling of organic carbon in the water and sediment column, and, consequently, higher deposition of organic carbon in the sediments. This "metabolism-based" scenario is consistent with the sedimentation patterns we observe for both Sites 1218 and 1219.
Resumo:
Magnitudes and patterns of energy expenditure in animal contests are seldom measured, but can be critical for predicting contest dynamics and understanding the evolution of ritualized fighting behaviour. In the sierra dome spider, males compete for sexual access to females and their webs. They show three distinct phases of fighting behaviour, escalating from ritualized noncontact display (phase 1) to cooperative wrestling (phase 2), and finally to unritualized, potentially fatal fighting (phase 3). Using CO2 respirometry, we estimated energetic costs of male-male combat in terms of mean and maximum metabolic rates and the rate of increase in energy expenditure. We also investigated the energetic consequences of age and body mass, and compared fighting metabolism to metabolism during courtship. All three phases involved mean energy expenditures well above resting metabolic rate (3.5 X, 7.4 X and 11.5 X). Both mean and maximum energy expenditure became substantially greater as fights escalated through successive phases. The rates of increase in energy use during phases 2 and 3 were much higher than in phase 1. In addition, age and body mass affected contest energetics. These results are consistent with a basic prediction of evolutionarily stable strategy contest models, that sequences of agonistic behaviours should be organized into phases of escalating energetic costs. Finally, higher energetic costs of escalated fighting compared to courtship provide a rationale for first-male sperm precedence in this spider species. (C) 2004 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
We inferred phylogeny among the three major lineages of the Acari ( mites) from the small subunit rRNA gene. Our phylogeny indicates that the Opilioacariformes is the sister-group to the Ixodida+Holothyrida, not the Ixodida+Mesostigmata+Holothyrida, as previously thought. Support for this relationship increased when sites with the highest rates of nucleotide substitution, and thus the greatest potential for saturation with nucleotide substitutions, were removed. Indeed, the increase in support ( and resolution) was despite a 70% reduction in the number of parsimony-informative sites from 408 to 115. This shows that rather than 'noisy' sites having no impact on resolution of deep branches, 'noisy' sites have the potential to obscure phylogenetic relationships. The arrangement, Ixodida+Holothyrida+Opilioacariformes, however, may be an artefact of long-branch attraction since relative-rate tests showed that the Mesostigmata have significantly faster rates of nucleotide substitution than other parasitiform mites. Thus, the fast rates of nucleotide substitution of the Mesostigmata might have caused the Mesostigmata to be attracted to the outgroup in our trees. We tested the hypothesis that the high rate of nucleotide substitution in some mites was related to their short generation times. The Acari species that have high nucleotide substitution rates usually have short generation times; these mites also tend to be more active and thus have higher metabolic rates than other mites. Therefore, more than one factor may affect the rate of nucleotide substitution in these mites.