981 resultados para FIBRILLARY ACIDIC PROTEIN
Resumo:
The adult dentate gyrus produces new neurons that morphologically and functionally integrate into the hippocampal network. In the adult brain, most excitatory synapses are ensheathed by astrocytic perisynaptic processes that regulate synaptic structure and function. However, these processes are formed during embryonic or early postnatal development and it is unknown whether astrocytes can also ensheathe synapses of neurons born during adulthood and, if so, whether they play a role in their synaptic transmission. Here, we used a combination of serial-section immuno-electron microscopy, confocal microscopy, and electrophysiology to examine the formation of perisynaptic processes on adult-born neurons. We found that the afferent and efferent synapses of newborn neurons are ensheathed by astrocytic processes, irrespective of the age of the neurons or the size of their synapses. The quantification of gliogenesis and the distribution of astrocytic processes on synapses formed by adult-born neurons suggest that the majority of these processes are recruited from pre-existing astrocytes. Furthermore, the inhibition of astrocytic glutamate re-uptake significantly reduced postsynaptic currents and increased paired-pulse facilitation in adult-born neurons, suggesting that perisynaptic processes modulate synaptic transmission on these cells. Finally, some processes were found intercalated between newly formed dendritic spines and potential presynaptic partners, suggesting that they may also play a structural role in the connectivity of new spines. Together, these results indicate that pre-existing astrocytes remodel their processes to ensheathe synapses of adult-born neurons and participate to the functional and structural integration of these cells into the hippocampal network.
Resumo:
Adult male hooded Lister rats were either fed a diet containing 150 microg/g soya phytoestrogens or a soya-free diet for 18 days. This concentration of phytoestrogens should have been sufficient to occupy the oestrogen-beta, but not the oestrogen-alpha, receptors. Using in situ hybridisation, significant reductions were found in brain-derived neurotrophic factor (BDNF) mRNA expression in the CA3 and CA4 region of the hippocampus and in the cerebral cortex in the rats fed the diet containing phytoestrogens, compared with those on the soya-free diet. No changes in glutamic acid decarboxylase-67 or glial fibrillary acidic protein mRNA were found. This suggests a role for oestrogen-beta receptors in regulating BDNF mRNA expression.
Resumo:
Background Riluzole is a neuroprotective drug used in the treatment of motor neurone disease. Recent evidence suggests that riluzole can up-regulate the expression and activity of the astrocyte glutamate transporter, GLT-1. Given that regulation of glutamate transport is predicted to be neuroprotective in Parkinson's disease, we tested the effect of riluzole in parkinsonian rats which had received a unilateral 6-hydroxydopamine injection into the median forebrain bundle. Results Rats were treated with intraperitoneal riluzole (4 mg/kg or 8 mg/kg), 1 hour before the lesion then once daily for seven days. Riluzole produced a modest but significant attenuation of dopamine neurone degeneration, assessed by suppression of amphetamine-induced rotations, preservation of tyrosine hydroxylase positive neuronal cell bodies in the substantia nigra pars compacta and attenuation of striatal tyrosine hydroxylase protein loss. Seven days after 6-hydroxydopamine lesion, reactive astrocytosis was observed in the striatum, as determined by increases in expression of glial fibrillary acidic protein, however the glutamate transporter, GLT-1, which is also expressed in astrocytes was not regulated by the lesion. Conclusions The results confirm that riluzole is a neuroprotective agent in a rodent model of parkinson’s disease. Riluzole administration did not regulate GLT-1 levels but significantly reduced GFAP levels, in the lesioned striatum. Riluzole suppression of reactive astrocytosis is an intriguing finding which might contribute to the neuroprotective effects of this drug.
Resumo:
Adult neural stem cell (aNSC) activity is tuned by external stimuli through the recruitment of transcription factors. This study examines the RE1 silencing transcription factor (REST) in neural stem/progenitor cells isolated from the subventricular zone of adult mouse brain and provides the first extensive characterization of REST-mediated control of the cellular and molecular properties. This study shows that REST knockdown affects the capacity of progenitor cells to generate neurospheres, reduces cell proliferation, and triggers cell differentiation despite the presence of growth factors. Genome- and transcriptome-wide analyses show that REST binding sites are significantly enriched in genes associated with synaptic transmission and nervous system development and function. Seeking candidate regulators of aNSC function, this study identifies a member of the bone morphogenetic protein (BMP) family, BMP6, the mRNA and protein of which increased after REST knockdown. The results of this study extend previous findings, demonstrating a reciprocal control of REST expression by BMPs. Administration of exogenous BMP6 inhibits aNSC proliferation and induces the expression of the astrocytic marker glial fibrillary acidic protein, highlighting its antimitogenic and prodifferentiative effects. This study suggests that BMP6 produced in a REST-regulated manner together with other signals can contribute to regulation of NSC maintenance and fate. © 2015 Wiley Periodicals, Inc.
Resumo:
Despite the favorable treatment of cranial nerve neuropathology in adulthood, some cases are resistant to therapy leading to permanent functional impairments In many cases, suitable treatment is problematic as the therapeutic target remains unknown Basic fibroblast growth factor (bFGF, FGF 2) is involved in neuronal maintenance and wound repair following nervous system lesions It is one of few neurotrophic molecules acting in autocrine, paracrine and intracrine fashions depending upon specific circumstances Peripheral cranial somatic motor neurons, i e hypoglossal (XII) neurons, may offer a unique opportunity to study cellular FGF 2 mechanisms as the molecule is present in the cytoplasm of neurons and in the nuclei of astrocytes of the central nervous system FGF-2 may trigger differential actions during development, maintenance and lesion of XII neurons because axotomy of those cells leads to cell death during neonatal ages, but not in adult life Moreover, the modulatory effects of astroglial FGF 2 and the Ca+2 binding protein S100 beta have been postulated in paracrine mechanisms after neuronal lesions In our study, adult Wistar rats received a unilateral crush or transection (with amputation of stumps) of XII nerve, and were sacrificed after 72 h or 11 days Brains were processed for immunohistochemical localization of neurofilaments (NF), with or without counterstaining for Nissl substance, ghat fibrillary acidic protein (GFAP, as a marker of astrocytes), S100 beta and FGF-2 The number of Nissl positive neurons of axotomized XII nucleus did not differ from controls The NF immunoreactivity increased in the perikarya and decreased in the neuropil of axotomized XII neurons 11 days after nerve crush or transection An astrocytic reaction was seen in the ipsilateral XII nucleus of the crushed or transected animals 72 h and 11 days after the surgery The nerve lesions did not change the number of FGF-2 neurons in the ipsilateral XII nucleus, however, the nerve transection increased the number of FGF-2 ghat profiles by 72 h and 11 days Microdensitometric image analysis revealed a short lasting decrease in the intensity of FGF 2 immunoreactivity in axotomized XII neurons by 72 h after nerve crush or transection and also an elevation of FGF-2 in the ipsilateral of ghat nuclei by 72h and 11 days after the two lesions S100 beta decreased in astrocytes of 11-day transected XII nucleus The two-color immunoperoxidase for the simultaneous detection of the GFAP/FGF-2 indicated FGF-2 upregulation in the nuclei of reactive astrocytes of the lesioned XII nucleus Astroglial FGF-2 may exert paracrine trophic actions in mature axotomized XII neurons and might represent a therapeutic target for neuroprotection in peripheral nerve pathology (C) 2009 Elsevier GmbH All rights reserved
Resumo:
In this study we evaluated whether administration of stem cells of neural origin (neural precursor cells, NPCs) could be protective against renal ischemia-reperfusion injury (IRI). We hypothesized that stem cell outcomes are not tissue-specific and that NPCs can improve tissue damage through paracrine mechanisms, especially due to immunomodulation. To this end, Wistar rats (200-250 g) were submitted to 1-hour ischemia and treated with NPCs (4 x 10(6) cells/animal) at 4 h of reperfusion. To serve as controls, ischemic animals were treated with cerebellum homogenate harvested from adult rat brain. All groups were sacrificed at 24 h of reperfusion. NPCs were isolated from rat fetus telencephalon and cultured until neurosphere formation (7 days). Before administration, NPCs were labeled with carboxyfluorescein diacetate succinimydylester (CFSE). Kidneys were harvested for analysis of cytokine profile and macrophage infiltration. At 24 h, NPC treatment resulted in a significant reduction in serum creatinine (IRI + NPC 1.21 + 0.18 vs. IRI 3.33 + 0.14 and IRI + cerebellum 2.95 + 0.78mg/dl, p < 0.05) and acute tubular necrosis (IRI + NPC 46.0 + 2.4% vs. IRI 79.7 + 14.2%, p < 0.05). NPC-CFSE and glial fibrillary acidic protein (GFAP)-positive cells (astrocyte marker) were found exclusively in renal parenchyma, which also presented GFAP and SOX-2 (an embryonic neural stem cell marker) mRNA expression. NPC treatment resulted in lower renal proinflammatory IL1-beta and TNF-alpha expression and higher anti-inflammatory IL-4 and IL-10 transcription. NPC-treated animals also had less macrophage infiltration and decreased serum proinflammatory cytokines (IL-1 beta, TNF-alpha and INF-gamma). Our data suggested that NPC therapy improved renal function by influencing immunological responses. Copyright (C) 2009 S. Karger AG, Basel
Resumo:
Schizophrenia is likely to be a consequence of serial alterations in a number of genes that, together with environmental factors, will lead to the establishment of the illness. The dorsolateral prefrontal cortex (Brodmann`s Area 46) is implicated in schizophrenia and executes high functions such as working memory, differentiation of conflicting thoughts, determination of right and wrong concepts, correct social behavior and personality expression. We performed a comparative proteome analysis using two-dimensional gel electrophoresis of pools from 9 schizophrenia and 7 healthy control patients` dorsolateral prefrontal cortex aiming to identify, by mass spectrometry, alterations in protein expression that could be related to the disease. In schizophrenia-derived samples, our analysis revealed 10 downregulated and 14 upregulated proteins. These included alterations previously implicated in schizophrenia, such as oligodendrocyte-related proteins (myelin basic protein and transferrin), as well as malate dehydrogenase, aconitase, ATP synthase subunits and cytoskeleton-related proteins. Also, six new putative disease markers were identified, including energy metabolism, cytoskeleton and cell signaling proteins. Our data not only reinforces the involvement of proteins previously implicated in schizophrenia, but also suggests new markers, providing further information to foster the comprehension of this important disease. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Neural differentiation has been extensively studied in vitro in a model termed neurospheres, which consists of aggregates of neural progenitor cells. Previous studies suggest that they have a great potential for the treatment of neurological disorders. One of the major challenges for scientists is to control cell fate and develop ideal culture conditions for neurosphere expansion in vitro, without altering their features. Similar to human neural progenitors, rat neurospheres cultured in the absence of epidermal and fibroblast growth factors for a short period increased the levels of beta-3 tubulin and decreased the expression of glial fibrillary acidic protein and nestin, compared to neurospheres cultured in the presence of these factors. In this work, we show that rat neurospheres cultured in suspension under mitogen-free condition presented significant higher expression of P2X2 and P2X6 receptor subunits, when compared to cells cultured in the presence of growth factors, suggesting a direct relationship between P2X2/6 receptor expression and induction of neuronal differentiation in mitogen-free cultured rat neurospheres.
Resumo:
A proteína glial fibrilar ácida (GFAP), subunidade dos filamentos intermediários do citoesqueleto celular, está presente no citoplasma de astrócitos. Técnicas imunohistoquímicas com anticorpos primários anti-GFAP são geralmente empregadas para identificar astrócitos no sistema nervoso, permitindo verificar também sua hipertrofia. Vários estudos mostram a distribuição, a morfologia e a citoarquitetura de astrócitos em várias regiões do SNC do homem e de animais de laboratório. No entanto, em animais domésticos e, especialmente em equinos, poucas informações estão disponíveis. No presente trabalho, verificou-se a densidade e a morfologia de astrócitos imunorreativos à GFAP na substância branca da córtex cerebral de equinos com leucoencefalomalácia (LEM) comparando-se esses aspectos com o de equinos normais. Animais com LEM apresentaram hipertrofia de astrócitos em áreas próximas às lesões, representada pelo aumento do corpo celular, do núcleo e dos prolongamentos citoplasmáticos. O número de astrócitos apresentou-se reduzido e a imunorreatividade foi mais acentuada. Nos animais normais, verificou-se distribuição constante de astrócitos imunorreagentes com características de fibrosos. Alterações vasculares nos animais com LEM, como por exemplo degeneração de endotélio vascular, também foram observadas, podendo estar associadas às alterações astrocíticas.
Resumo:
The thalamus plays an important role in the sensorial processing information, in this particular case, the visual information. Several neuronal groups have been characterized as conductors and processors of important sensorial information to the cerebral cortex. The lateral geniculate complex is one to them, and appears as a group very studied once it is responsible, in almost all totality, for the processing of visual information. Among the nuclei that constitute the lateral geniculate complex we highlight the dorsal lateral geniculate nucleus of the thalamus (DLG), the main thalamic relay for the visual information. This nucleus is located rostral and lateral to medial geniculate nucleus and ventral to thalamic pulvinar nucleus in most of the mammals. In the primates humans and non-humans, it presents as a laminate structure, arranged in layers, when observed in coronal sections. The objective of this work was to do a mapping of the retinal projections and a citoarchictetonic and neurochemical characterization of DLG in the marmoset (Callithrix jacchus), a New World primate. The retinal projections were traced by anterograde transport of subunit b of cholera toxin (CTb), the citoarchicteture was described by Nissl method, and to neurochemical characterization immunohistochemicals technical were used to examine the main neurotransmitters and neuroatives substances present in this neural center. In DGL of marmoset thalamus, in coronal sections labeled by Nissl method, was possible to visualize the division of this nucleus in four layers divided in two portions: magnocellular and parvocellular. The retinal projections were present being visualized fibers and terminals immunorreactives to CTb (IR-CTb) in the DLG ipsilateral and contralateral. And through the immunohistochemicals techniques was observed that DLG contain cells, fibers and/or terminals immunoreactives against neuronal nuclear protein, subunits of AMPA 15 glutamate receptors (GluR1, GluR2/3, GluR4), choline acetyltransferase, serotonin, glutamic acid decarboxylase, binding calcium proteins (calbindin, parvalbumin and calretinin), vasopressin, vasoactive intestinal polypeptide, and an astrocyte protein, glial fibrillary acidic protein.
Resumo:
The parabrachial complex (PB) is an area of the brainstem responsible for the processing and transmission of essential physiologic information for the survival of the organisms. This region is subdivided in approximately nine subregions, considering morphology, cytoarchitectural and functional characteristic. Its neurons have an extensive network of connections with other regions of the nervous system. The objective in this work was to map the retinal projection to the PB and make a citoarchitectonic and neurochemical characterization of this region in the common marmoset (Callithrix jacchus), a primate of the New World. The retinal projections were mapped by anterograde transport of the choleric toxin subunit b (CTb). The citoarchitecture was described through the Nissl method, and the neurochemical characterization was made through immunohistochemical technique to the some neurotransmitters and neuroactives substances present in this neural center. In marmoset PB, in the coronal sections labeled by Nissl method, we found a similar pattern to that evidenced in other animal species. The immunoreactivity against CTb was verified in the PBMv in fibers/terminal, characterizing such as retinal innervations in this area. The immunohistochemical technique reveled that the PB contain cells, fibers and/or terminals immunoreactives to the neuronal nuclear protein, Choline acetyl transferase, nitric oxide synthase, serotonin, enkephalin, substance P, Calcium-binding proteins (calbindin, calretinin e parvalbumin), and glial fibrillary acidic protein. The histochemical technique reveled cells and fibers NADPH-diaphorase reactive. Each one of those substances presented a characteristic pattern of demarcation in PB, and some serve as specific markers of subregions
Resumo:
The suprachiasmatic nucleus (SCN) of the anterior hypothalamus, together with the intergeniculate leaflet (IGL) of the thalamus are considered the central components of the circadian timing system (CTS) of mammals. This system is responsible for the generation and regulation of circadian rhythms by establishing a temporal organization of physiological processes and behaviors. The neuronal specific nuclear protein (NeuN) has been widely used as a neuronal marker in several studies. Since glial fibrillary acidic protein (GFAP) is a component of intermediate filaments found in the cytoplasm of astrocytes and is commonly used as a specific marker for these cells. This study aims to identify, in the marmoset, the NeuN immunoreactive neurons and glial cells immunoreactive to GFAP, as well as map the major route of photic synchronization of the STC, retinohypothalamic tract (RHT), and identify the indirect pathway to the SCN and pregeniculate nucleus (PGN) - structure homologous to IGL rodents, using immunohistochemical and cytoarchitectonic techniques. Observed in SCN the presence of neurons immunoreactive to NeuN and terminals immunoreactive subunit b of cholera toxin (CTb), neuropeptide Y (NPY) and serotonin (5- HT). In the PGN noted the presence of the NeuN and NPY immunoreactive neurons and the immunoreactive terminals CTb and 5-HT. Astrocytes are present throughout the extent of the SCN and the PGN this New World primate
Resumo:
BACKGROUND: The N-methyl-D-aspartate receptor antagonist ketamine and its active enantiomer, S(+)-ketamine, have been injected in the epidural and subarachnoid spaces to treat acute postoperative pain and relieve neuropathic pain syndrome. In this study we evaluated the effects of a single dose of preservative-free S(+)-ketamine, in doses usually used in clinical practice, in the spinal cord and meninges of dogs.METHODS: Under anesthesia (IV etomidate (2 mg/kg) and fentanyl (0.005 mg/kg), 16 dogs (6 to 15 kg) were randomized to receive a lumbar intrathecal injection (L5/6) of saline solution of 0.9% (control group) or S(+)-ketamine 1 mg/kg(-1) (ketamine group). All doses were administered in a volume of 1 mL over a 10-second interval. Accordingly, injection solution ranged from 0.6% to 1.5%. After 21 days of clinical observation, the animals were killed; spinal cord, cauda equine root, and meninges were removed for histological examination with light microscopy. Tissues were examined for demyelination (Masson trichrome), neuronal death (hematoxylin and eosin) and astrocyte activation (glial fibrillary acidic protein).RESULTS: No clinical or histological alterations of spinal tissue or meninges were found in animals from either control or ketamine groups.CONCLUSION: A single intrathecal injection of preservative-free S(+)-ketamine, at 1 mg/kg-1 dosage, over a concentration range of 6 to 15 mg/mL injected in the subarachnoid space in a single puncture, did not produce histological alterations in this experimental model. (Anesth Analg 2012;114:450-55)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Neoplasias provenientes do epitélio de revestimento do plexo coróide são inco-muns, tendo sido descritos 6 padrões morfológicos. O padrão anaplásico, também denominado carcinoma do plexo coróide, é o de menor freqüência e pode dar metastases fora do SNC. A distinção histológica desses tumores, particularmente da variedade anaplásica, com outras neoplasias primárias e metastáticas no SNC pode ser difícil. O uso de técnicas imunocitoquimicas em parafina tem-se mostrado útil no esclarecimento das linhagens tumorais. Os papilomas do plexo coróide têm, no entanto, sido objeto de controvérsia, por sua complexa expressão antigênica. Usando a técnica de imunoperoxidase (sistema avidina-biotina-peroxidase) pesquisaram-se, em dois casos da variedade anaplásica, os seguintes marcadores: proteína glial fibrilar ácida (GFAP) com anticorpo monoclonal e policlonal; ceratinas de 40-50kDa, ceratinas de 60-70kDa (callus ceratina), enolase neuronal específica (NSE) e proteína S-100, com anticorpos monoclonais. Os dois tumores mostraram positividade para NSE, proteína S-100 e ceratina de 40-50kDa; uma das duas neoplasias mostrou diferenciação glial, revelando positividade para GFAP tanto com anticorpo monoclonal quanto policlonal.