996 resultados para FIBRILLARY ACIDIC PROTEIN
Resumo:
The concept of cellular schwannoma as an unusual benign tumor is well established for peripheral nerves but has never been tested in neurosurgical series. In order to test the validity of this concept in cranial nerves and spinal roots we performed an analysis of the clinical and morphological characteristics of 12 cellular and 166 classical benign schwannomas. Immunohistochemical detection of antigen expression in Schwann cells including proliferating cell nuclear antigen (PCNA) was also performed. This study shows that cellular schwannomas in neurosurgical series manifest at a lower age than the classical benign variant and occur mainly in the spinal roots. Mitotic activity and sinusoidal vessels appear more frequently in cellular schwannomas and constitute with high cellularity, the most valuable criteria separating both entities. The postoperative course in both types of tumors was free of metastases or sarcomatous changes. Immunoexpression of S-100 protein, vimentin, epithelial membrane antigen and glial fibrillary acidic protein is not statistically different between the two variants. In contrast, PCNA is more highly expressed in cellular schwannomas. These These results confirm the concept that cellular schwannomas are a clinico-pathological variant of benign schwannomas and provide significant support for the introduction of this entity in neurosurgical oncology.
Resumo:
Recent evidence suggests that lactate could be a preferential energy substrate transferred from astrocytes to neurons. This would imply the presence of specific transporters for lactate on both cell types. We have investigated the immunohistochemical localization of two monocarboxylate transporters, MCT1 and MCT2, in the adult mouse brain. Using specific antibodies raised against MCT1 and MCT2, we found strong immunoreactivity for each transporter in glia limitans, ependymocytes and several microvessel-like elements. In addition, small processes distributed throughout the cerebral parenchyma were immunolabeled for monocarboxylate transporters. Double immunofluorescent labeling and confocal microscopy examination of these small processes revealed no co-localization between glial fibrillary acidic protein and monocarboxylate transporters, although many glial fibrillary acidic protein-positive processes were often in close apposition to elements labeled for monocarboxylate transporters. In contrast, several elements expressing the S100beta protein, another astrocytic marker found to be located in distinct parts of the same cell when compared with glial fibrillary acidic protein, were also strongly immunoreactive for MCT1, suggesting expression of this transporter by astrocytes. In contrast, MCT2 was expressed in a small subset of microtubule-associated protein-2-positive elements, indicating a neuronal localization. In conclusion, these observations are consistent with the possibility that lactate, produced and released by astrocytes (via MCT1), could be taken up (via MCT2) and used by neurons as an energy substrate.
Resumo:
Type 1 diabetes can affect hippocampal function triggering cognitive impairment through unknown mechanisms. Caffeine consumption prevents hippocampal degeneration and memory dysfunction upon different insults and is also known to affect peripheral glucose metabolism. Thus we now characterized glucose transport and the neurochemical profile in the hippocampus of streptozotocin-induced diabetic rats using in vivo(1)H NMR spectroscopy and tested the effect of caffeine consumption thereupon. We found that hippocampal glucose content and transport were unaltered in diabetic rats, irrespective of caffeine consumption. However diabetic rats displayed alterations in their hippocampal neurochemical profile, which were normalized upon restoration of normoglycaemia, with the exception of myo-inositol that remained increased (36 +/- 5%, p < 0.01 compared to controls) likely reflecting osmolarity deregulation. Compared to controls, caffeine-consuming diabetic rats displayed increased hippocampal levels of myo-inositol (15 +/- 5%, p < 0.05) and taurine (23 +/- 4%, p < 0.01), supporting the ability of caffeine to control osmoregulation. Compared to controls, the hippocampus of diabetic rats displayed a reduced density of synaptic proteins syntaxin, synaptophysin and synaptosome-associated protein of 25 kDa (in average 18 +/- 1%, p < 0.05) as well increased glial fibrillary acidic protein (20 +/- 5%, p < 0.05), suggesting synaptic degeneration and astrogliosis, which were prevented by caffeine consumption. In conclusion, neurochemical alterations in the hippocampus of diabetic rats are not related to defects of glucose transport but likely reflect osmoregulatory adaptations caused by hyperglycemia. Furthermore, caffeine consumption affected this neurochemical adaptation to high glucose levels, which may contribute to its potential neuroprotective effects, namely preventing synaptic degeneration and astrogliosis.
Resumo:
Malonate, methylmalonate and propionate are potentially neurotoxic metabolites in branched-chain organic acidurias. Their effects were tested on cultured 3D rat brain cell aggregates, using dosages of 0.1, 1.0 and 10.0 mM with a short but intense (twice a day over 3 days) and a longer but less intense treatment (every 3 rdday over 9 days). CNS cell-specific immunohistochemical stainings allowed the follow-up of neurons (axons, phosphorylated medium-weight neurofilament), astrocytes (glial fibrillary acidic protein) and oligodendrocytes (myelin basic protein). Methylmalonate and malonate were quantified by tandem mass spectrometry. Tandem mass spectrometry analysis of harvested brain cell aggregates revealed clear intracellular accumulation of methylmalonate and malonate. In immunohistochemical stainings oligodendrocytes appeared the most affected brain cells. The MBP signal disappeared already at 0.1 mM treatment with each metabolite. Mature astrocytes were not affected by propionate, while immature astrocytes on intense treatment with propionate developed cell swelling. 1 mM methylmalonate induced cell swelling of both immature and mature astrocytes , while 1 mM malonate only affected mature astrocytes. Neurons were not affected by methylmalonate, but 10.0 mM malonate on less intense treatment and 0.1, 1.0 and 10.0 mM propionate on intense treatment affected axonal growth. Our study shows significant uptake and deleterious effects of these metabolites on brain cells, principally on astrocytes and oligodendrocytes. This may be explained by the absence of the pathway in glial cells, which thus are not able to degrade these metabolites. Further studies are ongoing to elucidate the underlying mechanisms of the observed neurotoxic effects.
Resumo:
PURPOSE: To determine whether syngeneic retinal cells injected in the vitreous cavity of the rat are able to initiate a proliferative process and whether the ocular inflammation induced in rats by lipopolysaccharide (LPS) promotes this proliferative vitreoretinopathy (PVR). METHODS: Primary cultured differentiated retinal Müller glial (RMG) and retinal pigmented epithelial (RPE) cells isolated from 8 to 12 postnatal Lewis rats were injected into the vitreous cavity of 8- to 10-week-old Lewis rats (10(5) cells/eye in 2 microlieter sterile saline), with or without the systemic injection of 150 microgram LPS to cause endotoxin-induced uveitis (EIU). Control groups received an intravitreal injection of 2 microliter saline. At 5, 15, and 28 days after cell injections, PVR was clinically quantified, and immunohistochemistry for OX42, ED1, vimentin (VIM), glial fibrillary acidic protein (GFAP), and cytokeratin was performed. RESULTS: The injection of RMG cells, alone or in combination with RPE cells, induced the preretinal proliferation of a GFAP-positive tissue, that was enhanced by the systemic injection of LPS. Indeed, when EIU was induced at the time of RMG cell injection into the vitreous cavity, the proliferation led to retinal folds and localized tractional detachments. In contrast, PVR enhanced the infiltration of inflammatory cells in the anterior segment of the eye. CONCLUSIONS: In the rat, syngeneic retinal cells of glial origin induce PVR that is enhanced by the coinduction of EIU. In return, vitreoretinal glial proliferation enhanced the intensity and duration of EIU.
Resumo:
Despite a wealth of data on the neurotoxic effects of lead at the cellular and molecular levels, the reasons for its development-dependent neurotoxicity are still unclear. Here, the maturation-dependent effects of lead acetate were analyzed in immature and differentiated brain cells cultured in aggregates. Markers of general cytotoxicity as well as cell-type-specific markers of glial and neuronal cells showed that immature brain cells were more sensitive to lead than the differentiated counterparts, demonstrating that the development-dependent neurotoxicity of lead can be reproduced in aggregating brain cell cultures. After 10 days of treatment, astrocytes were found to be more affected by lead acetate than neurons in immature cultures, and microglial cells were strongly activated. Eleven days after cessation of the treatment, lead acetate caused a partial loss of astrocytes and an intense reactivity of the remaining ones. Furthermore, microglial cells expressed a macrophagic phenotype, and the loss of activity of neuron-specific enzymes was aggravated. In differentiated cultures, no reactive gliosis was found. It is hypothetized that the intense glial reactions (microgliosis and astrogliosis) observed in immature cultures contribute to the development-dependent neurotoxicity of lead.
Resumo:
The effects of subchronical applications of the mycotoxin Fumonisin B1 (FB1) were analyzed in vitro, using aggregating cell cultures of fetal rat telencephalon as a model. As cells in the aggregates developed from an immature state to a highly differentiated state, with synapse and compact myelin formation, it was possible to study the effects of FB1 at different developmental stages. The results showed that FB1 did not cause cell loss and it had no effects on neurons. However it decreased strongly the total content of myelin basic protein, the main constituent of the myelin sheath, during the myelination period (DIV 18-28). The loss of myelin was not accompanied by a loss of oligodendrocytes, the myelinating cells. However FB1 had effects on the maturation of oligodendrocytes, as revealed by a decrease in the expression of galactocerebroside, and on the compaction of myelin, as shown by a reduction of the expression of the mnyelin/oligodendrocyte glycoprotein MOG. The content of the cytoskeletal component glial fibrillary acidic protein (GFAP) was decreased in differentiated astrocytes, exclusively, while neurons were not affected by 40 microM of FB1 applied continuously for 10 days. In summary, FB1 selectively affected glial cells. In particular, FB1 delayed oligodendrocyte development and impaired myelin formation and deposition.
Resumo:
Astrocytes are the most abundant glial cell type in the brain. Although not apposite for long-range rapid electrical communication, astrocytes share with neurons the capacity of chemical signaling via Ca(2+)-dependent transmitter exocytosis. Despite this recent finding, little is known about the specific properties of regulated secretion and vesicle recycling in astrocytes. Important differences may exist with the neuronal exocytosis, starting from the fact that stimulus-secretion coupling in astrocytes is voltage independent, mediated by G-protein-coupled receptors and the release of Ca(2+) from internal stores. Elucidating the spatiotemporal properties of astrocytic exo-endocytosis is, therefore, of primary importance for understanding the mode of communication of these cells and their role in brain signaling. We here take advantage of fluorescent tools recently developed for studying recycling of glutamatergic vesicles at synapses (Voglmaier et al., 2006; Balaji and Ryan, 2007); we combine epifluorescence and total internal reflection fluorescence imaging to investigate with unprecedented temporal and spatial resolution, the stimulus-secretion coupling underlying exo-endocytosis of glutamatergic synaptic-like microvesicles (SLMVs) in astrocytes. Our main findings indicate that (1) exo-endocytosis in astrocytes proceeds with a time course on the millisecond time scale (tau(exocytosis) = 0.24 +/- 0.017 s; tau(endocytosis) = 0.26 +/- 0.03 s) and (2) exocytosis is controlled by local Ca(2+) microdomains. We identified submicrometer cytosolic compartments delimited by endoplasmic reticulum tubuli reaching beneath the plasma membrane and containing SLMVs at which fast (time-to-peak, approximately 50 ms) Ca(2+) events occurred in precise spatial-temporal correlation with exocytic fusion events. Overall, the above characteristics of transmitter exocytosis from astrocytes support a role of this process in fast synaptic modulation.
Resumo:
Maturation of astrocytes, neurons, and oligodendrocytes was studied in serum-free aggregating cell cultures of fetal rat telencephalon by an immunocytochemical approach. Cell type-specific immunofluorescence staining was examined by using antibodies directed against glial fibrillary acidic protein (GFAP) and vimentin, two astroglial markers; neuron-specific enolase (NSE) and neurofilament (NF), two neuronal markers, and galactocerebroside (GC), an oligodendroglial marker. It was found that the cellular maturation in aggregates is characterized by distinct developmental increases in immunoreactivity for GFAP, vimentin, NSE, NF, and GC, and by a subsequent decrease of vimentin-positive structures in more differentiated cultures. These findings are in agreement with observations in vivo, and they corroborate previous biochemical studies of this histotypic culture system. Treatment of very immature cultures with a low dose of epidermal growth factor (EGF, 5 ng/ml) enhanced the developmental increase in GFAP, NSE, NF and GC immunoreactivity, suggesting an acceleration of neuronal and glial maturation. In addition, EGF was found to alter the cellular organization within the aggregates, presumably by influencing cell migration.
Resumo:
Ochratoxin A (OTA), a mycotoxin and widespread food contaminant, is known for its patent nephrotoxicity and potential neurotoxicity. Previous observations in vitro showed that in the CNS, glial cells were particularly sensitive to OTA. In the search for the molecular mechanisms underlying OTA neurotoxicity, we investigated the relationship between OTA toxicity and glial reactivity, in serum-free aggregating brain cell cultures. Using quantitative reverse transcriptase-polymerase chain reaction to analyze changes in gene expression, we found that in astrocytes, non cytotoxic concentrations of OTA down-regulated glial fibrillary acidic protein, while it up-regulated vimentin and the peroxisome proliferator-activated receptor-gamma expression. OTA also up-regulated the inducible nitric oxide synthase and the heme oxygenase-1. These OTA-induced alterations in gene expression were more pronounced in cultures at an advanced stage of maturation. The natural peroxisome proliferator-activated receptor-gamma ligand, 15-deoxy-delta(12,14) prostaglandin J2, and the cyclic AMP analog, bromo cyclic AMP, significantly attenuated the strong induction of peroxisome proliferator-activated receptor-gamma and inducible nitric oxide synthase, while they partially reversed the inhibitory effect of OTA on glial fibrillary acidic protein. The present results show that OTA affects the cytoskeletal integrity of astrocytes as well as the expression of genes pertaining to the brain inflammatory response system, and suggest that a relationship exists between the inflammatory events and the cytoskeletal changes induced by OTA. Furthermore, these results suggest that, by inducing an atypical glial reactivity, OTA may severely affect the neuroprotective capacity of glial cells.
Resumo:
Microglial cells react early to a neurotoxic insult. However, the bioactive factors and the cell-cell interactions leading to microglial activation and finally to a neuroprotective or neurodegenerative outcome remain to be elucidated. Therefore, we analyzed the microglial reaction induced by methylmercury (MeHgCl) using cell cultures of different complexity. Isolated microglia were found to be directly activated by MeHgCl (10(-10) to 10(-6) M), as indicated by process retraction, enhanced lectin staining, and cluster formation. An association of MeHgCl-induced microglial clusters with astrocytes and neurons was observed in three-dimensional cultures. Close proximity was found between the clusters of lectin-stained microglia and astrocytes immunostained for glial fibrillary acidic protein (GFAP), which may facilitate interactions between astrocytes and reactive microglia. In contrast, immunoreactivity for microtubule-associated protein (MAP-2), a neuronal marker, was absent in the vicinity of the microglial clusters. Interactions between astrocytes and microglia were studied in cocultures treated for 10 days with MeHgCl. Interleukin-6 release was increased at 10(-7) M of MeHgCl, whereas it was decreased when each of these two cell types was cultured separately. Moreover, addition of IL-6 to three-dimensional brain cell cultures treated with 3 x 10(-7) M of MeHgCl prevented the decrease in immunostaining of the neuronal markers MAP-2 and neurofilament-M. IL-6 administered to three-dimensional cultures in the absence of MeHgCl caused astrogliosis, as indicated by increased GFAP immunoreactivity. Altogether, these results show that microglial cells are directly activated by MeHgCl and that the interaction between activated microglia and astrocytes can increase local IL-6 release, which may cause astrocyte reactivity and neuroprotection.
Resumo:
Chagasic megaoesophagus and megacolon are characterised by motor abnormalities related to enteric nervous system lesions and their development seems to be related to geographic distribution of distinct Trypanosoma cruzi subpopulations. Beagle dogs were infected with Y or Berenice-78 (Be-78) T. cruzi strains and necropsied during the acute or chronic phase of experimental disease for post mortem histopathological evaluation of the oesophagus and colon. Both strains infected the oesophagus and colon and caused an inflammatory response during the acute phase. In the chronic phase, inflammatory process was observed exclusively in the Be-78 infected animals, possibly due to a parasitism persistent only in this group. Myenteric denervation occurred during the acute phase of infection for both strains, but persisted chronically only in Be-78 infected animals. Glial cell involvement occurred earlier in animals infected with the Y strain, while animals infected with the Be-78 strain showed reduced glial fibrillary acidic protein immunoreactive area of enteric glial cells in the chronic phase. These results suggest that although both strains cause lesions in the digestive tract, the Y strain is associated with early control of the lesion, while the Be-78 strain results in progressive gut lesions in this model.
Resumo:
For decades, astrocytes have been regarded as passive partners of neurons in central nervous system (CNS) function. Studies of the last 20 years, however, challenged this view by demonstrating that astrocytes possess functional receptors for neurotransmitters and respond to their stimulation via release of gliotransmitters, including glutamate. Notably, astrocytes react to synaptically released neurotransmitters with intracellular calcium ([Ca(2+)]) elevations, which result in the release of glutamate via regulated exocytosis and, possibly, other mechanisms. These findings have led to a new concept of neuron-glia intercommunication where astrocytes play an unsuspected dynamic role by integrating neuronal inputs and modulating synaptic activity. The additional observation that glutamate release from astrocytes is controlled by molecules linked to inflammatory reactions, such as the cytokine tumor necrosis factor alpha (TNFalpha) and prostaglandins (PGs), suggests that glia-to-neuron signalling may be sensitive to changes in the production of these mediators occurring in pathological conditions. Indeed, a local, parenchymal brain inflammatory reaction (neuroinflammation) characterized by astrocytic and microglial activation has been reported in several neurodegenerative disorders, including AIDS dementia complex, Alzheimer's disease and amyotrophic lateral sclerosis. This transition may be accompanied by functional de-regulation and even degeneration of the astrocytes with the consequent disruption of the cross-talk normally occurring between these cells and neurons. Incorrect neuron-astrocyte interactions may be involved in neuronal derangement and contribute to disease development. The findings reported in this review suggest that a better comprehension of the glutamatergic interplay between neurons and astrocytes may provide information about normal brain function and also highlight potential molecular targets for therapeutic interventions in pathology.
Resumo:
Addiction to major drugs of abuse, such as cocaine, has recently been linked to alterations in adult neurogenesis in the hippocampus. The endogenous cannabinoid system modulates this proliferative response as demonstrated by the finding that pharmacological activation/blockade of cannabinoid CB1 and CB2 receptors not only modulates neurogenesis but also modulates cell death in the brain. In the present study, we evaluated whether the endogenous cannabinoid system affects cocaine-induced alterations in cell proliferation. To this end, we examined whether pharmacological blockade of either CB1 (Rimonabant, 3 mg/kg) or CB2 receptors (AM630, 3 mg/kg) would affect cell proliferation [the cells were labeled with 5-bromo-2'-deoxyuridine (BrdU)] in the subventricular zone (SVZ) of the lateral ventricle and the dentate subgranular zone (SGZ). Additionally, we measured cell apoptosis (as monitored by the expression of cleaved caspase-3) and glial activation [by analyzing the expression of glial fibrillary acidic protein (GFAP) and Iba-1] in the striatum and hippocampus during acute and repeated (4 days) cocaine administration (20 mg/kg). The results showed that acute cocaine exposure decreased the number of BrdU-immunoreactive (ir) cells in the SVZ and SGZ. In contrast, repeated cocaine exposure reduced the number of BrdU-ir cells only in the SVZ. Both acute and repeated cocaine exposure increased the number of cleaved caspase-3-, GFAP- and Iba1-ir cells in the hippocampus, and this effect was counteracted by AM630 or Rimonabant, which increased the number of BrdU-, GFAP-, and Iba1-ir cells in the hippocampus. These results indicate that the changes in neurogenic, apoptotic and gliotic processes that were produced by repeated cocaine administration were normalized by pharmacological blockade of CB1 and CB2. The restorative effects of cannabinoid receptor blockade on hippocampal cell proliferation were associated with the prevention of the induction of conditioned locomotion but not with the prevention of cocaine-induced sensitization.
Resumo:
The role of peroxisome proliferator activator receptor (PPAR)β/δ in the pathogenesis of Alzheimer's disease has only recently been explored through the use of PPARβ/δ agonists. Here we evaluated the effects of PPARβ/δ deficiency on the amyloidogenic pathway and tau hyperphosphorylation. PPARβ/δ-null mice showed cognitive impairment in the object recognition task, accompanied by enhanced DNA-binding activity of NF-κB in the cortex and increased expression of IL-6. In addition, two NF-κB-target genes involved in β-amyloid (Aβ) synthesis and deposition, the β site APP cleaving enzyme 1 (Bace1) and the receptor for advanced glycation endproducts (Rage), respectively, increased in PPARβ/δ-null mice compared to wild type animals. The protein levels of glial fibrillary acidic protein (GFAP) increased in the cortex of PPARβ/δ-null mice, which would suggest the presence of astrogliosis. Finally, tau hyperphosphorylation at Ser199 and enhanced levels of PHF-tau were associated with increased levels of the tau kinases CDK5 and phospho-ERK1/2 in the cortex of PPARβ/δ(-/-) mice. Collectively, our findings indicate that PPARβ/δ deficiency results in cognitive impairment associated with enhanced inflammation, astrogliosis and tau hyperphosphorylation in the cortex.