993 resultados para FEVER VIRUS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigated the comparative susceptibility of indigenous Moo Laat and improved Large White/Landrace pig breeds to infection with classical swine fever virus (CSFV) under controlled conditions in the Lao People's Democratic Republic (Lao PDR). The Moo Laat (ML) and Large White/Landrace crossbreed (LWC) pigs were inoculated with a standard challenge strain designated Lao/Kham225 (infectivity titre of 10(2.75) TCID50/ml). The results demonstrated that both the native breed and an improved pig breed are fully susceptible to CSFV infection and the mortality rate is high. LWC pigs demonstrated lower (or shorter) survival times (50% survival time: 11 days), earlier and higher pyrexia and earlier onset of viraemia compared to ML pigs (50% survival time: 18 days). In the context of village-based pig production, the longer time from infection to death in native ML pigs means that incubating or early sick pigs are likely to be sold once an outbreak of CSF is recognized in a village. This increased longevity probably contributes to the maintenance and spread of disease in a population where generally the contact rate is low.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Serosurveillance is a powerful tool fundamental to understanding infectious disease dynamics. The presence of virus neutralising antibody (VNAb) in sera is considered the best evidence of infection, or indeed vaccination, and the gold standard serological assay for their detection is the virus neutralisation test (VNT). However, VNTs are labour intensive, costly and time consuming. In addition, VNTs for the detection of antibodies to highly pathogenic viruses require the use of high containment facilities, restricting the application of these assays to the few laboratories with adequate facilities. As a result, robust serological data on such viruses are limited. In this thesis I develop novel VNTs for the detection of VNAb to two important, highly pathogenic, zoonotic viruses; rabies and Rift Valley fever virus (RVFV). The pseudotype-based neutralisation test developed in this study allows for the detection of rabies VNAb without the requirement for high containment facilities. This assay was utilised to investigate the presence of rabies VNAb in animals from a variety of ecological settings. In this thesis I present evidence of natural rabies infection in both domestic dogs and lions from rabies endemic settings. The assay was further used to investigate the kinetics of VNAb response to rabies vaccination in a cohort of free-roaming dogs. The RVFV neutralisation assay developed herein utilises a recombinant luciferase expressing RVFV, which allows for rapid, high-throughput serosurveillance of this important neglected pathogen. In this thesis I present evidence of RVFV infection in a variety of domestic and wildlife species from Northern Tanzania, in addition to the detection of low-level transmission of RVFV during interepidemic periods. Additionally, the investigation of a longitudinal cohort of domestic livestock also provided evidence of rapid waning of RVF VNAb following natural infection. Collectively, the serological data presented in this thesis are consistent with existing data in the literature generated using the gold standard VNTs. Increasing the availability of serological assays will allow the generation of robust serological data, which are imperative to enhancing our understanding of the complex, multi-host ecology of these two viruses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the absence of effective vaccine(s), control of African swine fever caused by African swine fever virus (ASFV) must be based on early, efficient, cost-effective detection and strict control and elimination strategies. For this purpose, we developed an indirect ELISA capable of detecting ASFV antibodies in either serum or oral fluid specimens. The recombinant protein used in the ELISA was selected by comparing the early serum antibody response of ASFV-infected pigs (NHV-p68 isolate) to three major recombinant polypeptides (p30, p54, p72) using a multiplex fluorescent microbead-based immunoassay (FMIA). Non-hazardous (non-infectious) antibody-positive serum for use as plate positive controls and for the calculation of sample-to-positive (S:P) ratios was produced by inoculating pigs with a replicon particle (RP) vaccine expressing the ASFV p30 gene. The optimized ELISA detected anti-p30 antibodies in serum and/or oral fluid samples from pigs inoculated with ASFV under experimental conditions beginning 8 to 12 days post inoculation. Tests on serum (n = 200) and oral fluid (n = 200) field samples from an ASFV-free population demonstrated that the assay was highly diagnostically specific. The convenience and diagnostic utility of oral fluid sampling combined with the flexibility to test either serum or oral fluid on the same platform suggests that this assay will be highly useful under the conditions for which OIE recommends ASFV antibody surveillance, i.e., in ASFV-endemic areas and for the detection of infections with ASFV isolates of low virulence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND African swine fever (ASF) is one of the most complex viral diseases affecting both domestic and wild pigs. It is caused by ASF virus (ASFV), the only DNA virus which can be efficiently transmitted by an arthropod vector, soft ticks of the genus Ornithodoros. These ticks can be part of ASFV-transmission cycles, and in Europe, O. erraticus was shown to be responsible for long-term maintenance of ASFV in Spain and Portugal. In 2014, the disease has been reintroduced into the European Union, affecting domestic pigs and, importantly, also the Eurasian wild boar population. In a first attempt to assess the risk of a tick-wild boar transmission cycle in Central Europe that would further complicate eradication of the disease, over 700 pre-existing serum samples from wild boar hunted in four representative German Federal States were investigated for the presence of antibodies directed against salivary antigen of Ornithodoros erraticus ticks using an indirect ELISA format. RESULTS Out of these samples, 16 reacted with moderate to high optical densities that could be indicative of tick bites in sampled wild boar. However, these samples did not show a spatial clustering (they were collected from distant geographical regions) and were of bad quality (hemolysis/impurities). Furthermore, all positive samples came from areas with suboptimal climate for soft ticks. For this reason, false positive reactions are likely. CONCLUSION In conclusion, the study did not provide stringent evidence for soft tick-wild boar contact in the investigated German Federal States and thus, a relevant involvement in the epidemiology of ASF in German wild boar is unlikely. This fact would facilitate the eradication of ASF in the area, although other complex relations (wild boar biology and interactions with domestic pigs) need to be considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND The recent occurrence and spread of African swine fever (ASF) in Eastern Europe is perceived as a serious risk for the pig industry in the European Union (EU). In order to estimate the potential risk of ASF virus (ASFV) entering the EU, several pathways of introduction were previously assessed separately. The present work aimed to integrate five of these assessments (legal imports of pigs, legal imports of products, illegal imports of products, fomites associated with transport and wild boar movements) into a modular tool that facilitates the visualization and comprehension of the relative risk of ASFV introduction into the EU by each analyzed pathway. RESULTS The framework's results indicate that 48% of EU countries are at relatively high risk (risk score 4 or 5 out of 5) for ASFV entry for at least one analyzed pathway. Four of these countries obtained the maximum risk score for one pathway: Bulgaria for legally imported products during the high risk period (HRP); Finland for wild boar; Slovenia and Sweden for legally imported pigs during the HRP. Distribution of risk considerably differed from one pathway to another; for some pathways, the risk was concentrated in a few countries (e.g., transport fomites), whereas other pathways incurred a high risk for 4 or 5 countries (legal pigs, illegal imports and wild boar). CONCLUSIONS The modular framework, developed to estimate the risk of ASFV entry into the EU, is available in a public domain, and is a transparent, easy-to-interpret tool that can be updated and adapted if required. The model's results determine the EU countries at higher risk for each ASFV introduction route, and provide a useful basis to develop a global coordinated program to improve ASFV prevention in the EU.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dengue fever is the most common cause of fever in travelers returning from the Caribbean, Central America, and South Central Asia.* Dengue infections are commonly reported from most tropical countries of the South Pacific, Asia, the Caribbean, the Americas, and Africa. This disease is caused by four similar viruses (DENV-1, -2, -3, and -4) and is spread through the bites of infected mosquitoes. For information on current outbreaks, consult CDC’s Travelers’ Health website (http://www.cdc.gov/travel). Dengue fever is a severe, flu-like illness that affects infants, young children and adults, but seldom causes death. Dengue should be suspected when a high fever (40°C/104°F) is accompanied by two of the following symptoms: severe headache, pain behind the eyes, muscle and joint pains, nausea, vomiting, swollen glands or rash. Symptoms usually last for 2–7 days, after an incubation period of 4–10 days following the bite from an infected mosquito.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Flaviviridae is a family of about 70 mostly arthropod-borne viruses many of which are major public health problems with members being present in most continents. Among the most important are yellow fever (YF), dengue with its four serotypes and Japanese encephalitis virus. A live attenuated virus is used as a cost effective, safe and efficacious vaccine against YF but no other live flavivirus vaccines have been licensed. The rise of recombinant DNA technology and its application to study flavivirus genome structure and expression has opened new possibilities for flavivirus vaccine development. One new approach is the use of cDNAs encopassing the whole viral genome to generate infectious RNA after in vitro transcription. This methodology allows the genetic mapping of specific viral functions and the design of viral mutants with considerable potential as new live attenuated viruses. The use of infectious cDNA as a carrier for heterologous antigens is gaining importance as chimeric viruses are shown to be viable, immunogenic and less virulent as compared to the parental viruses. The use of DNA to overcome mutation rates intrinsic of RNA virus populations in conjunction with vaccine production in cell culture should improve the reliability and lower the cost for production of live attenuated vaccines. The YF virus despite a long period ignored by researchers probably due to the effectiveness of the vaccine has made a come back, both in nature as human populations grow and reach endemic areas as well as in the laboratory being a suitable model to understand the biology of flaviviruses in general and providing new alternatives for vaccine development through the use of the 17D vaccine strain.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The yellow fever (YF) virus is the prototype flavivirus. The use of molecular techniques has unraveled the basic mechanisms of viral genome structure and expression. Recent trends in flavivirus research include the use of infectious clone technology with which it is possible to recover virus from cloned cDNA. Using this technique, mutations can be introduced at any point of the viral genome and their resulting effect on virus phenotype can be assessed. This approach has opened new possibilities to study several biological viral features with special emphasis on the issue of virulence/attenuation of the YF virus. The feasibility of using YF virus 17D vaccine strain, for which infectious cDNA is available, as a vector for the expression of heterologous antigens is reviewed

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Oropouche virus (OROV), of the family Bunyaviridae, is the second most frequent arbovirus causing febrile disease in Brazil. In spite of this, little is known about pathogenesis of OROV infection. This report describes an experimental model of OROV in golden hamster (Mesocricetus auratus). Following subcutaneous inoculation of OROV, over 50% of the animals developed disease characterized by lethargy, ruffled fur, shivering, paralysis, and approximately one third died. Animals were sacrificed on days 1, 3, 5, 8 and 11 post-inoculation to collect tissue samples from brain, heart, liver, lung, spleen, muscle and blood for virus titration, histology and OROV immunohistochemistry. OROV was detected in high titers in blood, liver and brain, but not in the other organs. Histopathology revealed meningoencephalitis and hepatitis, with abundant OROV antigen detected in liver and brain. Diffuse galectin-3 immunostaining in brain and liver supports microglial and Kupfer cells activation. This is the first description of an experimental model for OROV infection and should be helpful to study pathogenesis and possibly to test antiviral interventions such as drugs and vaccine candidates. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This report focuses mainly on the characterization of a Vero cell line stably expressing the flavivirus Kunjin (KUN) replicon C20SDrep (C20SDrepVero). We showed by immunofluorescence and cryoimmunoelectron microscopy that unique flavivirus-induced membrane structures, termed convoluted membranes/paracrystalline structures, were induced in the C20SDrepVero cells. These induced cytoplasmic foci were immunolabeled with KUN virus anti-NS3 antibodies and with antibodies to the cellular markers ERGIC53 (for the intermediate compartment) and protein disulfide isomerase (for the rough endoplasmic reticulum). However, in contrast to the large perinuclear inclusions observed by immunofluorescence with anti-double-stranded (ds)RNA antibodies in KUN virus-infected cells, the dsRNA in C20SDrepVero cells was localized to small isolated foci scattered throughout the cytoplasm, which were coincident with small foci dual-labeled with the trans-Golgi specific marker GaIT. importantly persistent expression of the KUN replicons in cells did not produce cytopathic effects, and the morphology of major host organelles (including Golgi, mitochondria, endoplasmic reticulum, and nucleus) was apparently unaffected. The amounts of plus- and minus-sense RNA synthesis in replicon cells were similar to those in KUN virus-infected cells until near the end of the latent period, but subsequently increases of about 10- and fourfold, respectively, occurred in infected cells. Virus-specified protein synthesis in C20SDrepVero cells was also about 10-fold greater than that in infected cells. When several KUN replicon cell lines were compared with respect to membrane induction, the relative efficiencies increased in parallel with increases in viral RNA and protein synthesis, consistent with the increases observed during the virus infectious cycle. Based on these observations, cell lines expressing less-efficient replicons may provide a useful tool to study early events in flavivirus RNA replication, which are difficult to assess in Virus infections. (C) 2001 Academic press.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Recombinant forms of the dengue 2 virus NS3 protease linked to a 40-residue co-factor, corresponding to part of NS2B, have been expressed in Escherichia coli and shown to be active against para-nitroanilide substrates comprising the P6-P1 residues of four substrate cleavage sequences. The enzyme is inactive alone or after the addition of a putative 13-residue co-factor peptide but is active when fused to the 40-residue co-factor, by either a cleavable or a noncleavable glycine linker. The NS4B/NS5 cleavage site was processed most readily, with optimal processing conditions being pH 9, I = 10 mm, 1 mm CHAPS, 20% glycerol. A longer 10-residue peptide corresponding to the NS2B/NS3 cleavage site (P6-P4') was a poorer substrate than the hexapeptide (P6-P1) para-nitroanilide substrate under these conditions, suggesting that the prime side substrate residues did not contribute significantly to protease binding. We also report the first inhibitors of a co-factor-complexed, catalytically active flavivirus NS3 protease. Aprotinin was the only standard serine protease inhibitor to be active, whereas a number of peptide substrate analogues were found to be competitive inhibitors at micromolar concentrations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We have previously reported successful trans-complementation of defective Kunjin virus genomic RNAs with a range of large lethal deletions in the nonstructural genes NSI, NS3, and NS5 (A. A. Khromykh et al., J. Virol. 74:3253-3263, 2000). In this study we have mapped further the minimal region in the NS5 gene essential for efficient trans-complementation of genome-length RNAs in repBHK cells to the first 316 of the 905 codons. To allow amplification and easy detection of complemented defective RNAs with deletions apparently affecting virus assembly, we have developed a dual replicon complementation system. In this system defective replicon RNAs with a deletion(s) in the nonstructural genes also encoded the puromycin resistance gene (PAC gene) and the reporter gene for beta-galactosidase (beta-Gal). Complementation of these defective replicon RNAs in repBHK cells resulted in expression of PAC and beta-Gal which allowed establishment of cell lines stably producing replicating defective RNAs by selection with puromycin and comparison of replication efficiencies of complemented defective RNAs by beta-Gal assay. Using this system we demonstrated that deletions in the C-terminal 434 codons of NS3 (codons 178 to 611) were complemented for RNA replication, while any deletions in the first 178 codons were not. None of the genome-length RNAs containing deletions in NS3 shown to be complementable for RNA replication produced secreted defective viruses during complementation in repBHK cells. In contrast, structural proteins produced from these complemented defective RNAs were able to package helper replicon RNA. The results define minimal regions in the NS3 and NS5 genes essential for the formation of complementable replication complex and show a requirement of NS3 in cis for virus assembly.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A self-modulating mechanism by the hepatitis C virus (HCV) core protein has been suggested to influence the level of HCV replication, but current data on this subject are contradictory. We examined the effect of wild-type and mutated core protein on HCV IRES- and cap-dependent translation. The wild-type core protein was shown to inhibit both IRES- and cap-dependent translation in an in vitro system. This effect was duplicated in a dose-dependent manner with a synthetic peptide representing amino acids 1-20 of the HCV core protein. This peptide was able to bind to the HCV IRES as shown by a mobility shift assay. In contrast, a peptide derived from the hepatitis B virus (HBV) core protein that contained a similar proportion of basic residues was unable to inhibit translation or bind the HCV IRES. A recombinant vaccinia-HCV core virus was used to examine the effect of the HCV core protein on HCV IRES-dependent translation in cells and this was compared with the effects of an HBV core-recombinant vaccinia virus. In CV-1 and HuH7 cells, the HCV core protein inhibited translation directed by the IRES elements of HCV, encephalomyocarditis virus and classical swine fever virus as well as cap-dependent translation, whereas in HepG2 cells, only HCV IRES-dependent translation was affected. Thus, the ability of the HCV core protein to selectively inhibit HCV IRES-dependent translation is cell-specific. N-terminal truncated (aa 1-20) HCV core protein that was expressed from a novel recombinant vaccinia virus in cells abrogated the inhibitory phenotype of the core protein in vivo, consistent with the above in vitro data.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Japanese encephalitis virus serocomplex is a group of mosquito-borne flaviviruses that cause severe encephalitic disease in humans. The recent emergence of several members of this serocomplex in geographic regions where other closely related flaviviruses are endemic has raised urgent human health issues. Thus, the impact of vaccination against one of these neurotropic virus on the outcome of infection with a second, serologically related virus is unknown. We show here that immunity against Murray Valley encephalitis virus in vaccinated mice can cross-protect but also augment disease severity following challenge with Japanese encephalitis virus. Immunepotentiation of heterologous flavivirus disease was apparent in animals immunized with a 'killed' virus preparation when humoral antiviral immunty of low magnitude was elicited. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Australian mosquitoes were evaluated for their ability to become infected with and transmit a Torres Strait strain of Japanese encephalitis virus. Mosquitoes, which were obtained from either laboratory colonies and collected using Centers for Disease Control and Prevention light traps baited with CO2 and octenol or reared from larvae, were infected by feeding on a blood/sucrose solution containing 10(4.5+/-0.1) porcine stable-equine kidney (PS-EK) tissue culture infectious dose(50)/ mosquito of the TS3306 virus strain. After 14 d, infection and transmission rates of 100% and 81%, respectively, were obtained for a southeast Queensland strain of Culex annulirostris Skuse, and 93% and 61%, respectively, for a far north Queensland strain. After 13 or more days, infection and transmission rates of > 90% and greater than or equal to 50%, respectively, were obtained for southeast Queensland strains of Culex sitiens Wiedemann and Culex quinquefasciatus Say, and a far north Queensland strain of Culex gelidus Theobald. Although infection rates were > 55%, only 17% of Ochlerotatus vigilax (Skuse) and no Cx. quinquefasciatus, collected from far north Queensland, transmitted virus. North Queensland strains of Aedes aegypti L., Ochlerotatus kochi (Donitz), and Verrallina funerea (Theobald) were relatively refractory to infection. Vertical transmission was not detected among 673 F, progeny of Oc. vigilax. Results of the current vector competence study, coupled with high field isolation rates, host feeding patterns and widespread distribution, confirm the status of Cx. annulirostris as the major vector of Japanese encephalitis virus in northern Australia. The relative roles of other species in potential Japanese encephalitis virus transmission cycles in northern Australia are discussed.