719 resultados para FERROMAGNETIC SUPERCONDUCTOR RUSR2GDCU2O8
Resumo:
We present an experimental study of the premartensitic and martensitic phase transitions in a Ni2MnGa single crystal by using ultrasonic techniques. The effect of applied magnetic field and uniaxial compressive stress has been investigated. It has been found that they substantially modify the elastic and magnetic behavior of the alloy. These experimental findings are a consequence of magnetoelastic effects. The measured magnetic and vibrational behavior agrees with the predictions of a recently proposed Landau-type model [A. Planes et al., Phys. Rev. Lett. 79, 3926 (1997)] that incorporates a magnetoelastic coupling as a key ingredient.
Resumo:
We have studied the relaxation dynamics of a dilute assembly of ferromagnetic particles in suspension. A formalism based on the Smoluchowski equation, describing the evolution of the probability density for the directions of the magnetic moment and of the axis of easy magnetization of the particles, has been developed. We compute the rotational viscosity from a Green-Kubo formula and give an expression for the relaxation time of the particles which comes from the dynamic equations of the correlation functions. Concerning the relaxation time for the particles, our results agree quite well with experiments performed on different samples of ferromagnetic particles for which the magnetic energy, associated with the interaction between the magnetic moments and the external field, or the energy of anisotropy plays a dominant role.
Resumo:
The Meissner and diamagnetic shielding effects and the upper, lower, and thermodynamical critical fields have been studied in a Ba2HoCu3O7-x sample using magnetization measurements in fields up to 55 kOe. The diamagnetic shielding curve shows the existence of a transition at Tc=91.5 K followed by a broad transition extending from 85 to 25 K which may be related to inhomogeneities in the oxygen content of the sample. A rather low flux expulsion (13.5%) is observed which we attribute to flux pinning or trapping. We show that the coexistence of superconducting and nonsuperconducting regions within the sample at temperatures just below Tc leads to strong reductions in the critical magnetic fields.
Resumo:
Magnetic-relaxation measurements of a Tl-based high-Tc superconductor show temperature-independent flux creep below 6 K. The effect is analyzed in terms of the overdamped quantum diffusion of two-dimensional vortices. Good agreement between theory and experiment is found.
Resumo:
A general mapping between the energy of pertinent magnetic solutions and the diagonal terms of the spin Hamiltonian in a local representation provides the first general framework to extract accurate values for the many body terms of extended spin Hamiltonians from periodic first-principle calculations. Estimates of these terms for La2CuO4, the paradigm of high-Tc superconductor parent compounds, and for the SrCu2O3 ladder compound are reported. For La2CuO4, present results support experimental evidence by Toader et al. [Phys. Rev. Lett. 94, 197202 (2005)]. For SrCu2O3 even larger four-body spin amplitudes are found together with Jl/Jr=1 and non-negligible ferromagnetic interladder exchange.
Resumo:
A general mapping between the energy of pertinent magnetic solutions and the diagonal terms of the spin Hamiltonian in a local representation provides the first general framework to extract accurate values for the many body terms of extended spin Hamiltonians from periodic first-principle calculations. Estimates of these terms for La2CuO4, the paradigm of high-Tc superconductor parent compounds, and for the SrCu2O3 ladder compound are reported. For La2CuO4, present results support experimental evidence by Toader et al. [Phys. Rev. Lett. 94, 197202 (2005)]. For SrCu2O3 even larger four-body spin amplitudes are found together with Jl/Jr=1 and non-negligible ferromagnetic interladder exchange.
Resumo:
We report the first example of a transition to long-range magnetic order in a purely dipolarly interacting molecular magnet. For the magnetic cluster compound Mn6O4Br4(Et2dbm)6, the anisotropy experienced by the total spin S=12 of each cluster is so small that spin-lattice relaxation remains fast down to the lowest temperatures, thus enabling dipolar order to occur within experimental times at Tc=0.16 K. In high magnetic fields, the relaxation rate becomes drastically reduced and the interplay between nuclear- and electron-spin lattice relaxation is revealed.
Resumo:
The most extensively studied Heusler alloys are those based on the Ni-Mn-Ga system. However, to overcome the high cost of Gallium and the usually low martensitic transformation temperature, the search for Ga-free alloys has been recently attempted, particularly, by introducing In, Sn or Sb. In this work, two alloys (Mn50Ni35.5In14.5 and Ni50Mn35In15) have been obtained by melt spinning. We outline their structural and thermal behaviour. Mn50Ni35.5In14.5 alloy has the transformation above room temperature whereas Ni50Mn35In15 does not have this transformation in the temperature range here analyzed
Resumo:
Estudi de l’obtenció de les les pólvores del compost superconductor GdBa2Cu3O7 mitjançant la utilització de diferents mètodes partint de solucions aquoses de nitrat estabilitzades amb PEG, com son apartir del reactor Kjeldhal o a partir d’un assecatge ràpid damunt una placa calefactora.En el procés d’obtenció d’aquestes pólvores es vol fer una caracterització dels productesinicials, intermedis i finals que s’aniran obtenint durant les diferents etapes. Aquest estudi esfarà mitjançant varis tipus d’anàlisi, com la difracció de raig X (XRD), l’espectroscòpiainfraroja (IR) o la termogravimetria (TG).Finalment, també es comprovarà si els nitrats i el PEG que formen la solució aquosa espoden assecar en forma de capa, i si posteriorment, és possible la seva descomposició percombustió
Resumo:
Now when the technology is fast developing it is very important to investigate new hybrid structures. One way is to use ferrite ferroelectric layered structures. Theoretical and experimental investigation of such structures was made. These structures have advantages of both layers and it is possible to tune the behavior of this structure by external electric and magnetic field. But these structures have some disadvantages connected with presence of thick ferroelectric layer. One way to overcome this problem is to use slotline. So this is another new way to create hybrid ferrite ferroelectric structures, but it is needed to create new theory and find experimental proof that the behavior of these structures can be tuned with external magnetic and electric fields.
Resumo:
The work reported in this thesis is dedicated to irreversible magnetic properties in pyrolytic nanocarbon samples. Based on atomic force microscope images, the samples consist of carbon clusters with radius 30..120 nm. These are treated as single-domain nanoparticles. Magnetic hysteresis, field cooled, zero field cooled and thermoremanent magnetization measurements were performed using an RF SQUID magnetometer and ferromagnetic behaviour was observed. Analysis suggests that the ferromagnetic ordering is associated with defects in a thin surface layer, whose thickness is independent of particle size. Critical radius for single-domain particles, critical radius for coherent rotation, magnetic layer thickness, distance between elementary magnetic moments, saturation magnetization, exchange stiffness constant and anisotropy energy density are also presented.