547 resultados para F-DWARF
Resumo:
We show that the upper bound for the central magnetic field of a super-Chandrasekhar white dwarf calculated by Nityananda and Konar Phys. Rev. D 89, 103017 (2014)] and in the concerned comment, by the same authors, against our work U. Das and B. Mukhopadhyay, Phys. Rev. D 86, 042001 (2012)] is erroneous. This in turn strengthens the argument in favor of the stability of the recently proposed magnetized super-Chandrasekhar white dwarfs. We also point out several other numerical errors in their work. Overall we conclude that the arguments put forth by Nityananda and Konar are misleading.
Resumo:
On 15-16 January 2005, three offshore species of cetaceans (33 short-finned pilot whales, Globicephala macrorhynchus, one minke whale, Balaenoptera acutorostrata, and two dwarf sperm whales, Kogia sima) stranded alive on the beaches of North Carolina. The pilot whales stranded near Oregon Inlet, the minke whale in northern North Carolina, and the dwarf sperm whales near Cape Hatteras. Live strandings of three species in one weekend was unique in North Carolina and qualified as an Unusual Mortality Event. Gross necropsies were conducted on 16-17 January 2005 on 27 pilot whales, two dwarf sperm whales, and the minke whale. Samples were collected for clinical pathology, parasitology, gross pathology, histopathology, microbiology and serology. There was variation in the number of animals sampled for each collection type, however, due to carcasses washing off the beach or degradation in carcass condition during the course of the response. Comprehensive histologic examination was conducted on 16 pilot whales, both dwarf sperm whales, and the minke whale. Limited organ or only head tissue suites were obtained from nine pilot whales. Histologic examination of tissues began in February 2005 and concluded in December 2005 when final sampling was concluded. Neither the pilot whales nor dwarf sperm whales were emaciated although none had recently ingested prey in their stomachs. The minke whale was emaciated; it was likely a dependent calf that became separated from the female. Most serum biochemistry abnormalities appear to have resulted from the stranding and indicated deteriorating condition from being on land for an extended period. Three pilot whales had clinical evidence of pre-existing systemic inflammation, which was supported by histopathologic findings. Although gross and histologic lesions involving all organ systems were noted, consistent lesions were not observed across species. Verminous pterygoid sinusitis and healed fishery interactions were seen in pilot whales but neither of these changes were causes of debilitation or death. In three pilot whales and one dwarf sperm whale there was evidence of clinically significant disease in postcranial tissues which led to chronic debilitation. Cardiovascular disease was present in one pilot whale and one dwarf sperm whale; musculoskeletal disease and intra-abdominal granulomas were present in two pilot whales. These lesions were possible, but not definitive, causal factors in the stranding. Remaining lesions were incidental or post-stranding. The minke whale and three of five tested pilot whales had positive morbillivirus titers (≥1:8 with one at >1:256), but there was no histologic evidence of active viral infection. Parasites (nematodes, cestodes, and trematodes) were collected from 26 pilot whales and two dwarf sperm whales. Sites of collection included stomach, nasal/pterygoid, peribullar sinuses, blubber, and abdominal cavity. Parasite species, locations and loads were within normal limits for free-ranging cetaceans and were not considered causative for the stranding event. Gas emboli lesions which were considered consistent with or diagnostic of sonarassociated strandings of beaked whales or small cetaceans were not found in the whales stranded as part of UMESE0501Sp. Twenty-five heads were examined with nine specific anatomic locations of interest: extramandibular fat, intramandibular fat, auditory meatus, peribullar acoustic fat, peribullar soft tissue, peribullar sinus, pterygoid sinus, melon, and brain. The common finding in all examined heads was verminous pterygoid sinusitis. Intramandibular adipose tissue reddening, typically adjacent to the vascular plexus, was observed in some individuals and could represent localized hemorrhage resulting from vascular rete rupture, hypostatic congestion, or erythrocyte rupture during the freeze/thaw cycle. One cetacean had peracute to acute subdural hemorrhage that likely occurred from thrashing on the beach post-stranding, although its occurrence prior to stranding cannot be excluded. Information provided to NMFS by the U.S. Navy indicated routine tactical mid-frequency sonar operations from individual surface vessels over relatively short durations and small spatial scales within the area and time period investigated. No marine mammals were detected by marine mammal observers on operational vessels; standard operating procedure for surface naval vessels operating mid-frequency sonar is the use of trained visual lookouts using high-powered binoculars. Sound propagation modeling using information provided to NMFS indicated that acoustic conditions in the vicinity likely depended heavily on position of the receivers (e.g., range, bearing, depth) relative to that of the sources. Absent explicit information on the location of animals meant that it was not possible to estimate received acoustic exposures from active sonar transmissions. Nonetheless, the event was associated in time and space with naval activity using mid-frequency active sonar. It also had a number of features in common (e.g., the “atypical” distribution of strandings involving multiple offshore species, all stranding alive, and without evidence of common infectious or other disease process) with other sonar-related cetacean mass stranding events. Given that this event was the only stranding of offshore species to occur within a 2-3 day period in the region on record (i.e., a very rare event), and given the occurrence of the event simultaneously in time and space with a naval exercise using active sonar, the association between the naval sonar activity and the location and timing of the event could be a causal rather than a coincidental relationship. However, evidence supporting a definitive association is lacking, and, in particular, there are differences in operational/environmental characteristics between this event and previous events where sonar has apparently played a role in marine mammal strandings. This does not preclude behavorial avoidance of noise exposure. No harmful algal blooms were present along the Atlantic coast south of the Chesapeake Bay during the months prior to the event. Environmental conditions, including strong winds, changes in upwelling- to downwelling-favorable conditions, and gently sloping bathymetry, were consistent with conditions which have been correlated with other mass strandings. In summary, we did not find commonality in gross and histologic lesions that would indicate a single cause for this stranding event. Three pilot whales and one dwarf sperm whale had debilitating conditions identified that could have contributed to stranding, one pilot whale had a debilitating condition (subdural hemorrhage) that could have been present prior to or resulting from stranding. While the pilot and dwarf sperm whale strandings may have had a common cause, the minke whale stranding was probably just coincidental. On the basis of examination of physical evidence in the affected whales, however, we cannot definitively conclude that there was or was not a causal link between anthropogenic sonar activity or environmental conditions (or a combination of these factors) and the strandings. Overall, the cause of UMESE0501Sp in North Carolina is not and likely will not be definitively known. (PDF contains 240 pages)
Feeding habits of the dwarf weakfish (Cynoscion nannus) off the coasts of Jalisco and Colima, Mexico
Resumo:
Sciaenids from the Pacific coast of Mexico are used as a second-class fish species for human consumption (Aguilar-Palomino et al., 1996). The dwarf weakfish (Cynoscion nannus) (Castro-Aguirre and Arvizu-Martínez, 1976) is often caught as bycatch in the shrimp fishery but, because of its small size (<27 cm TL, total length), it is not considered a valuable resource. This species can be found in great numbers in waters between 100 and 812 m (Allen and Robertson, 1994; Fischer et al., 1995) associated with the soft-bottom regions off the coast of Jalisco and Colima (González-Sansón et al., 1997).
Resumo:
Chromosomal location of the major ribosomal RNA genes (rRNA) were studied in the dwarf surfclam (Mulinia lateralis, Say) using fluorescence in situ hybridization (FISH). FISH probes for the rRNA genes were made by polymerase chain reaction (PCR), labeled with digoxigenin-11-dUTP and detected with fluorescein-labeled antidigoxigenin antibodies. Mulinia lateralis had a diploid number of 38 chromosomes and all chromosomes were telocentric. FISH with the rRNA probe produced positive and consistent signals on two pairs of chromosomes: Chromosome 15 with a relative length of 4.6% and Chromosome 19, the shortest chromosome. Both loci were telomeric. The rRNA location provides the first physical landmark of the M. lateralis genome.
Resumo:
2009
Resumo:
2008
Resumo:
High-resolution spectroscopic VLT/UVES observations are presented for the B-type main-sequence star, AV 304, in the Small Magellanic Cloud (SMC). These spectra have been analysed using LTE model-atmosphere techniques, to derive stellar atmospheric parameters and chemical compositions. As AV 304 is located within the hydrogen burning main-sequence band, its chemical composition should reflect that of the SMC interstellar medium (ISM). A detailed line-by-line differential analysis has been undertaken relative to a Galactic comparison star. A general metal deficiency for the a-process elements O, Si & S of -0.43 +/- 0.05 dex is found for AV 304, with iron having a similar underabundance. Oxygen may be relatively over- abundant by similar to0.1 dex and carbon and aluminium underabundant by similar to0.2 dex. A large nitrogen underabundance (of -1.2 dex relative to hydrogen and -0.7 dex relative to iron) is found. This is interpreted in terms of the CNO bi-cycle having been suppressed in the SMC. Furthermore, the large nitrogen deficiency is in excellent agreement with that found for SMC H II regions. Indeed, this represents a first for stellar astrophysics - confirming the low base-line nitrogen composition of the SMC ISM (viz. 12+log(N/H) similar to 6.66 +/- 0.10 dex).
Resumo:
We report on our findings of the bright, pulsating, helium atmosphere white dwarf GD 358, based on time-resolved optical spectrophotometry. We identify 5 real pulsation modes and at least 6 combination modes at frequencies consistent with those found in previous observations. The measured Doppler shifts from our spectra show variations with amplitudes of up to 5.5 km s-1 at the frequencies inferred from the flux variations. We conclude that these are variations in the line-of-sight velocities associated with the pulsational motion. We use the observed flux and velocity amplitudes and phases to test theoretical predictions within the convective driving framework, and compare these with similar observations of the hydrogen atmosphere white dwarf pulsators (DAVs). The wavelength dependence of the fractional pulsation amplitudes (chromatic amplitudes) allows us to conclude that all five real modes share the same spherical degree, most likely, l=1. This is consistent with previous identifications based solely on photometry. We find that a high signal-to-noise mean spectrum on its own is not enough to determine the atmospheric parameters and that there are small but significant discrepancies between the observations and model atmospheres. The source of these remains to be identified. While we infer Teff =24 kK and log g ~ 8.0 from the mean spectrum, the chromatic amplitudes, which are a measure of the derivative of the flux with respect to the temperature, unambiguously favour a higher effective temperature, 27 kK, which is more in line with independent determinations from ultra-violet spectra.
Resumo:
GD 552 is a high proper motion star with the strong, double-peaked emission lines characteristic of the dwarf nova class of cataclysmic variable (CV) star, and yet no outburst has been detected during the past 12yr of monitoring. We present spectroscopy taken with the aim of detecting emission from the mass donor in this system. We fail to do so at a level which allows us to rule out the presence of a near-main-sequence star donor. Given GD 552's orbital period of 103 min, this suggests that it is either a system that has evolved through the ~80-minute orbital period minimum of CV stars and now has a brown dwarf mass donor, or that has formed with a brown dwarf donor in the first place. This model explains the low observed orbital velocity of the white dwarf and GD 552's low luminosity. It is also consistent with the absence of outbursts from the system.
Resumo:
We present high-speed, three-colour photometry of the eclipsing cataclysmic variable SDSS J150722.30+523039.8 (hereafter SDSS J1507). This system has an orbital period of 66.61 min, placing it below the observed `period minimum' for cataclysmic variables. We determine the system parameters via a parametrized model of the eclipse fitted to the observed lightcurve by ?2 minimization. We obtain a mass ratio of q = 0.0623 +/- 0.0007 and an orbital inclination . The primary mass is Mw = 0.90 +/- 0.01Msolar. The secondary mass and radius are found to be Mr = 0.056 +/- 0.001Msolar and Rr = 0.096 +/- 0.001Rsolar, respectively. We find a distance to the system of 160 +/- 10pc. The secondary star in SDSS J1507 has a mass substantially below the hydrogen burning limit, making it the second confirmed substellar donor in a cataclysmic variable. The very short orbital period of SDSS J1507 is readily explained if the secondary star is nuclearly evolved, or if SDSS J1507 formed directly from a detached white dwarf/brown dwarf binary. Given the lack of any visible contribution from the secondary star, the very low secondary mass and the low HeI ?6678/Ha emission-line ratio, we argue that SDSS J1507 probably formed directly from a detached white dwarf/brown dwarf binary. If confirmed, SDSS J1507 will be the first such system identified. The implications for binary star evolution, the brown dwarf desert and the common envelope phase are discussed.
Resumo:
A long-standing and unverified prediction of binary star evolution theory is the existence of a population of white dwarfs accreting from substellar donor stars. Such systems ought to be common, but the difficulty of finding them, combined with the challenge of detecting the donor against the light from accretion, means that no donor star to date has a measured mass below the hydrogen burning limit. We applied a technique that allowed us to reliably measure the mass of the unseen donor star in eclipsing systems. We were able to identify a brown dwarf donor star, with a mass of 0.052 ± 0.002 solar mass. The relatively high mass of the donor star for its orbital period suggests that current evolutionary models may underestimate the radii of brown dwarfs.
Resumo:
Many lizard species will shed their tail as a defensive response (e.g., to escape a putative predator or aggressive conspecific). This caudal autotomy incurs a number of costs as a result of loss of the tail itself, loss of resources (i.e., stored in the tail or due to the cost of regeneration), and altered behavior. Few studies have examined the metabolic costs of caudal autotomy. A previous study demonstrated that geckos can move faster after tail loss as a result of reduced weight or friction with the substrate; however, there are no data for the effects of caudal autotomy on locomotory energetics. We examined the effect of tail loss on locomotory costs in the Cape dwarf gecko Lygodactylus capensis (similar to 0.9 g) using a novel method for collecting data on small lizards, a method previously used for arthropods. We measured CO2 production during 5-10 min of exhaustive exercise (in response to stimulus) and during a 45-min recovery period. During exercise, we measured speed (for each meter moved) as well as total distance traveled. Contrary to our expectations, tailless geckos overall expended less effort in escape running, moving both slower and for a shorter distance, compared with when they were intact. Tailless geckos also exhibited lower excess CO2 production (CO2 production in excess of normal resting metabolic rate) during exercising. This may be due to reduced metabolically active tissue (tails represent 8.7% of their initial body mass). An alternative suggestion is that a change in energy substrate use may take place after tail loss. This is an intriguing finding that warrants future biochemical investigation before we can predict the relative costs of tail loss that lizards might experience under natural conditions.