924 resultados para Eye-blink startle
Resumo:
The effects of unconditional stimulus (US) valence (aversive electro-tactile stimulus vs. nonaversive imperative stimulus of a RT task) and conditioning paradigm (delay vs. trace) on affective learning as indexed by verbal ratings of conditional stimulus (CS) pleasantness and blink startle modulation and on relational learning as indexed by electrodermal responses were investigated. Affective learning was not affected by the conditioning paradigm; however, electrodermal responses and blink latency shortening indicated delayed learning in the trace procedure. Changes in rated CS pleasantness were found with the aversive US, but not with the non-aversive US. Differential conditioning as indexed by electrodermal responses and startle modulation was found regardless of US valence. The finding of significant differential blink modulation and electrodermal responding in the absence of a change in rated CS pleasantness as a result of conditioning with a non-aversive US was replicated in a second experiment. These results seem to indicate that startle modulation during conditioning is mediated by the arousal level of the anticipated US, rather than by the valence of the CS. (C) 2002 Elsevier Science (USA). All rights reserved.
Resumo:
The habituation to intense acoustic stimuli and the acquisition of differentially conditioned fear were assessed in 53 clinically anxious and 30 non-anxious control children and young adolescents. Anxious children tended to show larger electrodermal responses during habituation, but did not differ in blink startle latency or magnitude. After acquisition training, non-anxious children rated the CS + as more fear provoking and arousing than the CS- whereas the ratings of anxious children did not differ. However, anxious children rated the CS + as more fear provoking after extinction, a difference that was absent in non-anxious children. During extinction training, anxious children displayed larger blink magnitude facilitation during CS + and a trend towards larger electrodermal responses, a tendency not seen in nonanxious children. These data suggest that extinction of fear learning is retarded in anxious children. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Objectif : Le but de ce travail est d'étudier les corrélations existantes entre les patterns de l'iris, la perception du temps et la fréquence de clignement des paupières (eye blink rate) et ceci en relation avec l'addiction à la cigarette. Méthodologie: Revue de la littérature existante. Expériences sur une cohorte d'au moins trente sujets fumeurs/non-fumeurs. Analyses statistiques. Résultats: Nos résultats confirment qu'il existe des relations entre l'impulsivité, les patterns d'iris, l'eye blink rate spontané et la perception du temps. Nous observons également que l'addiction à la cigarette et son niveau de dépendance ont une influence sur ces différentes mesures. En effet, les sujets fumeurs tendent à avoir une personnalité plus impulsive par rapport aux sujets contrôles. On remarque également une nette diminution de l'eye blink rate dans le groupe des fumeurs et une tendance à la sur-estimation du temps qui passe. Conclusion : Ce travail nous permet de mieux comprendre les différentes corrélations qui existent entre les différentes variables que nous avons mesurées (patterns d'iris, score d'impulsivité et eye blink rate) ainsi que leur relation à l'addiction à la cigarette. Dès lors qu'il est avéré que les fumeurs peuvent avoir une perception du temps altérée par rapport au groupe contrôle, il serait intéressant d'en étudier l'évolution sur le long terme (aggravation avec la durée du tabagisme actif) ainsi que les conséquences qui en découlent écologiquement au moyen d'études longitudinales et de terrain.
Resumo:
A human-computer interface (HCI) system designed for use by people with severe disabilities is presented. People that are severely paralyzed or afflicted with diseases such as ALS (Lou Gehrig's disease) or multiple sclerosis are unable to move or control any parts of their bodies except for their eyes. The system presented here detects the user's eye blinks and analyzes the pattern and duration of the blinks, using them to provide input to the computer in the form of a mouse click. After the automatic initialization of the system occurs from the processing of the user's involuntary eye blinks in the first few seconds of use, the eye is tracked in real time using correlation with an online template. If the user's depth changes significantly or rapid head movement occurs, the system is automatically reinitialized. There are no lighting requirements nor offline templates needed for the proper functioning of the system. The system works with inexpensive USB cameras and runs at a frame rate of 30 frames per second. Extensive experiments were conducted to determine both the system's accuracy in classifying voluntary and involuntary blinks, as well as the system's fitness in varying environment conditions, such as alternative camera placements and different lighting conditions. These experiments on eight test subjects yielded an overall detection accuracy of 95.3%.
Resumo:
Background: The pupillary light reflex characterizes the direct and consensual response of the eye to the perceived brightness of a stimulus. It has been used as indicator of both neurological and optic nerve pathologies. As with other eye reflexes, this reflex constitutes an almost instantaneous movement and is linked to activation of the same midbrain area. The latency of the pupillary light reflex is around 200 ms, although the literature also indicates that the fastest eye reflexes last 20 ms. Therefore, a system with sufficiently high spatial and temporal resolutions is required for accurate assessment. In this study, we analyzed the pupillary light reflex to determine whether any small discrepancy exists between the direct and consensual responses, and to ascertain whether any other eye reflex occurs before the pupillary light reflex. Methods: We constructed a binocular video-oculography system two high-speed cameras that simultaneously focused on both eyes. This was then employed to assess the direct and consensual responses of each eye using our own algorithm based on Circular Hough Transform to detect and track the pupil. Time parameters describing the pupillary light reflex were obtained from the radius time-variation. Eight healthy subjects (4 women, 4 men, aged 24–45) participated in this experiment. Results: Our system, which has a resolution of 15 microns and 4 ms, obtained time parameters describing the pupillary light reflex that were similar to those reported in previous studies, with no significant differences between direct and consensual reflexes. Moreover, it revealed an incomplete reflex blink and an upward eye movement at around 100 ms that may correspond to Bell’s phenomenon. Conclusions: Direct and consensual pupillary responses do not any significant temporal differences. The system and method described here could prove useful for further assessment of pupillary and blink reflexes. The resolution obtained revealed the existence reported here of an early incomplete blink and an upward eye movement.
Resumo:
A healthy human would be expected to show periodic blinks, making a brief closure of the eyelids. Most blinks are spontaneous, occurring regularly with no external stimulus. However a reflex blink can occur in response to external stimuli such as a bright light, a sudden loud noise, or an object approaching toward the eyes. A voluntary or forced blink is another type of blink in which the person deliberately closes the eyes and the lower eyelid raises to meet the upper eyelid. A complete blink, in which the upper eyelid touches the lower eyelid, contributes to the health of ocular surface by providing a fresh layer of tears as well as maintaining optical integrity by providing a smooth tear film over the cornea. The rate of blinking and its completeness vary depending on the task undertaken during blink assessment, the direction of gaze, the emotional state of the subjects and the method under which the blink was measured. It is also well known that wearing contact lenses (both rigid and soft lenses) can induce significant changes in blink rate and completeness. It is been established that efficient blinking plays an important role in ocular surface health during contact lens wear and for improving contact lens performance and comfort. Inefficient blinking during contact lens wear may be related to a low blink rate or incomplete blinking and can often be a reason for dry eye symptoms or ocular surface staining. It has previously been shown that upward gaze can affect blink rate, causing it to become faster. In the first experiment, it was decided to expand on previous studies in this area by examining the effect of various gaze directions (i.e. upward gaze, primary gaze, downward gaze and lateral gaze) as well as head angle (recumbent position) on normal subjects’ blink rate and completeness through the use of filming with a high-speed camera. The results of this experiment showed that as the open palpebral aperture (and exposed ocular surface area) increased from downward gaze to upward gaze, the number of blinks significantly increased (p<0.04). Also, the size of closed palpebral aperture significantly increased from downward gaze to upward gaze (p<0.005). A weak positive correlation (R² = 0.18) between the blink rate and ocular surface area was found in this study. Also, it was found that the subjects showed 81% complete blinks, 19% incomplete blinks and 2% of twitch blinks in primary gaze, consistent with previous studies. The difference in the percentage of incomplete blinks between upward gaze and downward gaze was significant (p<0.004), showing more incomplete blinks in upward gaze. The findings of this experiment suggest that while blink rate becomes slower in downward gaze, the completeness of blinking is typically better, thereby potentially reducing the risk of tear instability. On the other hand, in upward gaze while the completeness of blinking becomes worse, this is potentially offset by increased blink frequency. In addition, blink rate and completeness were not affected by lateral gaze or head angle, possibly because these conditions have similar size of the open palpebral aperture compared with primary gaze. In the second experiment, an investigation into the changes in blink rate and completeness was carried out in primary gaze and downward gaze with soft and rigid contact lenses in unadapted wearers. Not surprisingly, rigid lens wear caused a significant increase in the blink rate in both primary (p<0.001) and downward gaze (p<0.02). After fitting rigid contact lenses, the closed palpebral aperture (blink completeness) did not show any changes but the open palpebral aperture showed a significant narrowing (p<0.04). This might occur from the subjects’ attempt to avoid interaction between the upper eyelid and the edge of the lens to minimize discomfort. After applying topical anaesthetic eye drops in the eye fitted with rigid lenses, the increased blink rate dropped to values similar to that before lens insertion and the open palpebral aperture returned to baseline values, suggesting that corneal and/or lid margin sensitivity was mediating the increased blink rate and narrowed palpebral aperture. We also investigated the changes in the blink rate and completeness with soft contact lenses including a soft sphere, double slab-off toric design and periballast toric design. Soft contact lenses did not cause any significant changes in the blink rate, closed palpebral aperture, open palpebral aperture and the percentage of incomplete blinks in either primary gaze or downward gaze. After applying anaesthetic eye drops, the blink rate reduced in both primary gaze and downward gaze, however this difference was not statistically significant. The size of the closed palpebral aperture and open palpebral aperture did not show any significant changes after applying anaesthetic eye drops. However it should be noted that the effects of rigid and soft contact lenses that we observed in these studies were only the immediate reaction to contact lenses and in the longer term, it is likely that these responses will vary as the eye adapts to the presence of the lenses.
Resumo:
In view of the evidence that cognitive deficits in schizophrenia are critically important for long-term outcome, it is essential to establish the effects that the various antipsychotic compounds have on cognition, particularly second-generation drugs. This parallel group, placebo-controlled study aimed to compare the effects in healthy volunteers (n = 128) of acute doses of the atypical antipsychotics amisulpride (300 mg) and risperidone (3 mg) to those of chlorpromazine (100 mg) on tests thought relevant to the schizophrenic process: auditory and visual latent inhibition, prepulse inhibition of the acoustic startle response, executive function and eye movements. The drugs tested were not found to affect auditory latent inhibition, prepulse inhibition or executive functioning as measured by the Cambridge Neuropsychological Test Battery and the FAS test of verbal fluency. However, risperidone disrupted and amisulpride showed a trend to disrupt visual latent inhibition. Although amisulpride did not affect eye movements, both risperidone and chlorpromazine decreased peak saccadic velocity and increased antisaccade error rates, which, in the risperidone group, correlated with drug-induced akathisia. It was concluded that single doses of these drugs appear to have little effect on cognition, but may affect eye movement parameters in accordance with the amount of sedation and akathisia they produce. The effect risperidone had on latent inhibition is likely to relate to its serotonergic properties. Furthermore, as the trend for disrupted visual latent inhibition following amisulpride was similar in nature to that which would be expected with amphetamine, it was concluded that its behaviour in this model is consistent with its preferential presynaptic dopamine antagonistic activity in low dose and its efficacy in the negative symptoms of schizophrenia.
Resumo:
Federal Aviation Administration, Washington, D.C.
Resumo:
The effects of attention to a lead stimulus and of its sensory properties on modulation of the acoustic blink reflex were investigated. Participants performed a reaction time task cued by an acoustic or a visual lead stimulus. In Experiment 1, half the participants were presented with sustained lead stimuli. For the remainder, the lead stimulus was discrete and consisted of two brief presentations that marked the onset and offset of a stimulus-free interval. In Experiment 2, sustained lead stimuli were presented at a low or high intensity. The attentional demands of the task enhanced blink latency and magnitude modulation during acoustic and visual lead stimuli, with blink modulation being largest at a late point during the lead stimulus. Independent of the attentional effects, blink latency and magnitude modulation were larger during sustained than during discrete acoustic lead stimuli, whereas there was no difference for visual lead stimuli. Increases in the intensity of the lead stimulus enhanced blink modulation regardless of lead stimulus modality. Attention to a lead stimulus and the properties of the lead stimulus appear to have independent effects on blink reflex modulation.
Resumo:
Previous studies found larger attentional modulation of acoustic blinks during task-relevant than during task-irrelevant acoustic or visual, but not tactile, lead stimuli. Moreover, blink modulation was larger overall during acoustic lead stimuli. The present experiment investigated whether these results reflect modality specificity of attentional blink modulation or effects of continuous stimulation. Participants performed a discrimination and counting task with acoustic, visual, or tactile lead stimuli. Stimuli were presented Sustained or consisted of two short discrete stimuli. The sustained condition replicated previous results. In the discrete condition, blinks were larger during task-relevant than during task-irrelevant stimuli in all groups regardless of lead stimulus modality. Thus, previous results that seemed consistent with modality-specific accounts of attentional blink modulation reflect effects of continuous stimulus input.
Resumo:
Four experiments investigated the attentional modulation of acoustic blinks during continuous spatial tracking tasks. Experiment 1 found blink magnitude inhibition in a visual tracking task. Experiment 2 replicated this finding and also found blink latency slowing. Experiment 3 varied the difficulty of the task and found larger blink inhibition in the easy condition. Blink latency slowing did not differ and was significant at both difficulty levels. Experiment 4 employed less difficult visual and acoustic tracking tasks at two levels of task load. Blink magnitude inhibition during the visual and facilitation during the acoustic task was significant during high load in both modality groups. Blink latency was slowed in all visual task conditions and shortened in the difficult acoustic task. These results indicate that attentional blink modulation in a continuous spatial tracking task is modality specific.
Resumo:
The blink reflex is modulated if a weak lead stimulus precedes the blink-eliciting stimulus. In two experiments, we examined the effects of the sensory modality of the lead and blink-eliciting stimuli on blink modulation. Acoustic, visual, or tactile lead stimuli were followed by an acoustic (Experiment 1) or an electrotactile (Experiment 2) blink-eliciting stimulus at lead intervals of -30, 0, 30, 60, 120, 240, 360, and 4,500 msec. The inhibition of blink magnitude at the short (60- to 360-msec) lead intervals and the facilitation of blink magnitude at the long (4,500-msec) lead interval observed for each lead stimulus modality was relatively unaffected by the blink-eliciting stimulus modality. The facilitation of blink magnitude at the very short (-30- to 30-msec) lead intervals was dependent on the combination of the lead and the blink-eliciting stimulus modalities. Modality specific and nonspecific processes operate at different levels of perceptual processing.
Resumo:
The human startle response is a sensitive, noninvasive measure of central nervous system activity that is Currently used in a wide variety of research and clinical settings. In this article, we raise methodological issues and present recommendations for optimal methods of startle blink electromyographic (EMG) response elicitation, recording, quantification, and reporting. It is hoped that this report Will foster more methodological validity and reliability in research using the startle response, Lis well Lis increase the detail with which relevant methodology is reported in publications using this measure.