993 resultados para Extreme-ultraviolet (XUV) spectroscopy


Relevância:

100.00% 100.00%

Publicador:

Resumo:

New R-matrix calculations of electron impact excitation rates in Ca XV are used to derive theoretical electron density diagnostic emission line intensity ratios involving 2s(2)2p(2)- 2s2p(3) transitions, specifically R-1 = I(208.70 Angstrom)/I(200.98 Angstrom), R-2 = I(181.91 Angstrom)/I(200.98 Angstrom), and R-3 = I(215.38 Angstrom)/I(200.98 Angstrom), for a range of electron temperatures (T-e = 10(6.4)-10(6.8) K) and densities (Ne = 10(9)-10(13) cm(-3)) appropriate to solar coronal plasmas. Electron densities deduced from the observed values of R-1, R-2, and R-3 for several solar flares, measured from spectra obtained with the Naval Research Laboratory's S082A spectrograph on board Skylab, are found to be consistent. In addition, the derived electron densities are in excellent agreement with those determined from line ratios in Ca XVI, which is formed at a similar electron temperature to Ca XV. These results provide some experimental verification for the accuracy of the line ratio calculations, and hence the atomic data on which they are based. A set of eight theoretical Ca XV line ratios involving 2s(2)2p(2)-2s2p(3) transitions in the wavelength range similar to140-216 Angstrom are also found to be in good agreement with those measured from spectra of the TEXT tokamak plasma, for which the electron temperature and density have been independently determined. This provides additional support for the accuracy of the theoretical line ratios and atomic data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent fully relativistic calculations of radiative rates and electron impact excitation cross-sections for FeXIII are used to generate emission-line ratios involving 3s23p2-3s3p3 and 3s23p2-3s23p3d transitions in the 170-225 and 235-450 Å wavelength ranges covered by the Solar Extreme-Ultraviolet Research Telescope and Spectrograph (SERTS). A comparison of these line ratios with SERTS active region observations from rocket flights in 1989 and 1995 reveals generally very good agreement between theory and experiment. Several new FeXIII emission features are identified, at wavelengths of 203.79, 259.94, 288.56 and 290.81 Å. However, major discrepancies between theory and observation remain for several FeXIII transitions, as previously found by Landi and others, which cannot be explained by blending. Errors in the adopted atomic data appear to be the most likely explanation, in particular for transitions which have 3s23p3d1D2 as their upper level. The most useful FeXIII electron-density diagnostics in the SERTS spectral regions are assessed, in terms of the line pairs involved being (i) apparently free of atomic physics problems and blends, (ii) close in wavelength to reduce the effects of possible errors in the instrumental intensity calibration, and (iii) very sensitive to changes in Ne over the range 108-1011cm-3. It is concluded that the ratios which best satisfy these conditions are 200.03/202.04 and 203.17/202.04 for the 170-225 Å wavelength region, and 348.18/320.80, 348.18/368.16, 359.64/348.18 and 359.83/368.16 for 235-450 Å.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structure and properties of a newly emerged solar active region (NOAA Active Region 7985) are discussed using the Coronal Diagnostic Spectrometer (CDS) and the Extreme- Ultraviolet Imaging Telescope (EIT) on board the Solar and Heliospheric Observatory. CDS obtained high-resolution EUV spectra in the 308-381 Angstrom and 513-633 Angstrom wavelength ranges, while EIT recorded full-disk EUV images in the He II (304 Angstrom), Fe IX/X (171 Angstrom), Fe xii (195 Angstrom), and Fe XV (284 Angstrom) bandpasses. Electron density measurements from Si rx, Si X, Fe xii, Fe XIII, and Fe xiv line ratios indicate that the region consists of a central high- density core with peak densities of the order of 1.2 x 10(10) cm(-3), which decrease monotonically to similar to5.0 X 10(8) cm(-3) at the active region boundary. The derived electron densities also vary systematically with temperature. Electron pressures as a function of both active region position and temperature were estimated using the derived electron densities and ion formation temperatures, and the constant pressure assumption was found to be an unrealistic simplification. Indeed, the active region is found to have a high-pressure core (1.3 x 10(16) cm(-3) K) that falls to 6.0 x 10(14) cm(-3) K just outside the region. CDS line ratios from different ionization stages of iron, specifically Fe xvi (335.4 Angstrom) and Fe xiv (334.4 Angstrom), were used to diagnose plasma temperatures within the active region. Using this method, peak temperatures of 2.1 x 10(6) K were identified. This is in good agreement with electron temperatures derived using EIT filter ratios and the two-temperature model of Zhang et al. The high- temperature emission is confined to the active region core, while emission from cooler (1-1.6) x 10(6) K lines originates in a system of loops visible in EIT 171 and 195 X images. Finally, the three-dimensional geometry of the active region is investigated using potential field extrapolations from a Kitt Peak magnetogram. The combination of EUV and magnetic field extrapolations extends the "core-halo" picture of active region structure to one in which the core is composed of a number of compact coronal loops that confine the hot, dense, high- pressure core plasma while the halo emission emerges from a system of cooler and more extended loops.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent R-matrix calculations of electron impact excitation rates for transitions among the 2s(2)2p(2), 2s2p(3) and 2p(4) levels of Fe XXI are used to derive theoretical electron density (N-e) sensitive emission-line ratios involving 2S2(2)p(2)-2s2p(3) transitions in the similar to 98-146 Angstrom wavelength range. A comparison of these with observations from the PLT tokamak plasma, for which the electron density has been independently determined, reveals generally very good agreement between theory and experiment, and in some instances removes discrepancies found previously. The observed Fe XXI ratios for a solar flare, obtained with the OSO-5 satellite, imply electron densities which are consistent, with discrepancies that do not exceed 0.2 dex. In addition, the derived values of N-e are similar to those estimated for the high-temperature regions of other solar flares. The good agreement between theory and observation, in particular for the tokamak spectra, provides experimental support for the accuracy of the present line-ratio calculations, and hence for the atomic data on which they are based.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent R-matrix calculations of electron impact excitation rates in Ni XII are used to derive the emission line ratios R-1 = I(154.17 Angstrom)/I(152.15 Angstrom), R-2 = I(152.95 Angstrom)/I(152.15 Angstrom) and R-3 = 1(160.55 Angstrom)/I(152.15 Angstrom). This is the first time (to our knowledge) that theoretical emission line ratios have been calculated for this ion. The ratios are found to be insensitive to changes in the adopted electron density (N-e) when N-e greater than or equal to 5 x 10(11) cm(-3), typical of laboratory plasmas. However, they do vary with electron temperature (T-e), with for example R-1 and R-3 changing by factors of 1.3 and 1.8, respectively, between T-e = 10(5) and 10(6) K. A comparison of the theoretical line ratios with measurements from the Joint European Tents (JET) tokamak reveals very good agreement between theory and observation for R-1, with an average discrepancy of only 7%. Agreement between the calculated and experimental ratios for R-2 and R-3 is less satisfactory, with average differences of 30 and 33%, respectively. These probably arise from errors in the JET instrument calibration curve. However, the discrepancies are smaller than the uncertainties in the R-2 and R-3 measurements. Our results, in particular for R-1, provide experimental support for the accuracy of the Ni XIII line ratio calculations, and hence for the atomic data adopted in their derivation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

R-matrix calculations of electron impact excitation rates in N- like S x are used to derive theoretical emission-line intensity ratios involving 2s(2)2p(3)-2s2p(4) transitions in the 189-265 Angstrom wavelength range. A comparison of these with observational data for solar flares and active regions, obtained with the Naval Research Laboratory's S082A spectrograph on board Skylab and the Solar EUV Rocket Telescope and Spectrograph, reveals that many of the S x lines in the spectra are badly blended with emission features from other species. However, the intensity ratios I(228.70 Angstrom)/I(264.24 Angstrom) and I(228.70 Angstrom)/I(259.49 Angstrom) are found to provide useful electron density diagnostics for flares, although the latter cannot be employed for active regions, because of blending of the 259.49 Angstrom line with an unidentified transition in these solar features.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The primary objective of this work is the analysis and interpretation of coronal observations of Capella obtained in 1999 September with the High Energy Transmission Grating Spectrometer on the Chandra X-ray Observatory and the Extreme Ultraviolet Explorer (EUVE). He-like lines of O (O vii) are used to derive a density of 1.7 x 10(10) cm(-3) for the coronae of the binary, consistent with the upper limits derived from Fe xxi, Ne ix and Mg xi line ratios. Previous estimates of the electron density based on Fe xxi should be considered as upper limits. We construct emission measure distributions and compare the theoretical and observed spectra to conclude that the coronal material has a temperature distribution that peaks around 4-6 MK, implying that the coronae of Capella were significantly cooler than in the previous years. In addition, we present an extended line list with over 100 features in the 5-24 Angstrom wavelength range, and find that the X-ray spectrum is very similar to that of a solar flare observed with SMM. The observed to theoretical Fe xvii 15.012-Angstrom line intensity reveals that opacity has no significant effect on the line flux. We derive an upper limit to the optical depth, which we combine with the electron density to derive an upper limit of 3000 km for the size of the Fe xvii emitting region. In the same context, we use the Si iv transition region lines of Capella from HST/Goddard High-Resolution Spectrometer observations to show that opacity can be significant at T = 10(5) K, and derive a path-length of approximate to 75 kin for the transition region. Both the coronal and transition region observations are consistent with very small emitting regions, which could be explained by small loops over the stellar surfaces.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New R-matrix calculations of electron impact excitation rates for Fe XI are used to determine theoretical emission line ratios applicable to solar and stellar coronal observations. These are subsequently compared to solar spectra of the quiet Sun and an active region made by the Solar EUV Rocket Telescope and Spectrograph (SERTS-95), as well as Skylab observations of two flares. Line blending is identified, and electron densities of 10(9.3), 10(9.7), greater than or equal to 10(10.8), and greater than or equal to 10(11.3) cm(-3) are found for the quiet Sun, active region, and the two flares, respectively. Observations of the F5 IV-V star Procyon, made with the Extreme Ultraviolet Explorer (EUVE) satellite, are compared and contrasted with the solar observations. It is confirmed that Procyon's average coronal conditions are very similar to those seen in the quiet Sun, with N-e = 10(9.4) cm(-3). In addition, although the quiet Sun is the closest solar analog to Procyon, we conclude that Procyon's coronal temperatures are slightly hotter than solar. A filling factor of 25(-12)(+38)% was derived for the corona of Procyon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report results on the performance of a free-electron laser operating at a wavelength of 13.7 nm where unprecedented peak and average powers for a coherent extreme-ultraviolet radiation source have been measured. In the saturation regime, the peak energy approached 170 J for individual pulses, and the average energy per pulse reached 70 J. The pulse duration was in the region of 10 fs, and peak powers of 10 GW were achieved. At a pulse repetition frequency of 700 pulses per second, the average extreme-ultraviolet power reached 20 mW. The output beam also contained a significant contribution from odd harmonics of approximately 0.6% and 0.03% for the 3rd (4.6 nm) and the 5th (2.75 nm) harmonics, respectively. At 2.75 nm the 5th harmonic of the radiation reaches deep into the water window, a wavelength range that is crucially important for the investigation of biological samples.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New fully relativistic calculations of radiative rates and electron impact excitation cross-sections for Fe XVI are used to determine theoretical emission-line ratios applicable to the 251-361 and 32-77 angstrom portions of the extreme-ultraviolet (EUV) and soft X-ray spectral regions, respectively. A comparison of the EUV results with observations from the Solar Extreme-Ultraviolet Research Telescope and Spectrograph (SERTS) reveals excellent agreement between theory and experiment. However, for emission lines in the 32-49 angstrom portion of the soft X-ray spectral region, there are large discrepancies between theory and measurement for both a solar flare spectrum obtained with the X-Ray Spectrometer/Spectrograph Telescope (XSST) and for observations of Capella from the Low- Energy Transmission Grating Spectrometer (LETGS) on the Chandra X-ray Observatory. These are probably due to blending in the solar flare and Capella data from both first-order lines and from shorter wavelength transitions detected in second and third order. By contrast, there is very good agreement between our theoretical results and the XSST and LETGS observations in the 50-77 angstrom wavelength range, contrary to previous results. In particular, there is no evidence that the Fe XVI emission from the XSST flare arises from plasma at a much higher temperature than that expected for Fe XVI in ionization equilibrium, as suggested by earlier work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fully relativistic calculations of radiative rates and electron impact excitation cross-sections for Fe X are used to derive theoretical emission-line ratios involving transitions in the 174-366 angstrom wavelength range. A comparison of these with solar active region observations obtained during the 1989 and 1995 flights of the Solar Extreme-ultraviolet Research Telescope and Spectrograph (SERTS) reveals generally very good agreement between theory and experiment. Several Fe X emission features are detected for the first time in SERTS spectra, while the 3s(2)3p(5) P-2(3/2)-3s(2)3p(4)(S-1)3d D-2(3/2) transition at 195.32 angstrom is identified for the first time (to our knowledge) in an astronomical source. The most useful Fe X electron density (N-e) diagnostic line ratios are assessed to be 175.27/174.53 and 175.27/177.24, which both involve lines close in wavelength and free from blends, vary by factors of 13 between N-e = 10(8) and 10(11) cm(-3), and yet show little temperature sensitivity. Should these lines not be available, then the 257.25/345.74 ratio may be employed to determine N-e, although this requires an accurate evaluation of the instrument intensity calibration over a relatively large wavelength range. However, if the weak 324.73 angstrom line of Fe X is reliably detected, the use of 324.73/345.74 or 257.25/324.73 is recommended over 257.25/345.74. Electron densities deduced from 175.27/174.53 and 175.27/177.24 for the stars Procyon and alpha Cen, using observations from the Extreme-Ultraviolet Explorer (EUVE) satellite, are found to be consistent and in agreement with the values of N-e determined from other diagnostic ratios in the EUVE spectra. A comparison of several theoretical extreme-ultraviolet Fe X line ratios with experimental values for a theta-pinch, for which the plasma parameters have been independently determined, reveals reasonable agreement between theory and observation, providing some independent support for the accuracy of the adopted atomic data.