961 resultados para Expression Patterns
Resumo:
The function of eosinophils has been attributed to host defense, immunomodulation, and fibrosis. Although eosinophils are found among infiltrating cells in a broad spectrum of skin diseases, their pathogenic role remains uncertain. This study aimed to analyze the cytokine expression by eosinophils in different skin diseases.
Resumo:
BACKGROUND: The objective of this study was to link expression patterns of B-cell-specific Moloney murine leukemia virus integration site 1 (Bmi-1) and p16 to patient outcome (recurrence and survival) in a cohort of 252 patients with oral and oropharyngeal squamous cell cancer (OSCC). METHODS: Expression levels of Bmi-1 and p16 in samples from 252 patients with OSCC were evaluated immunohistochemically using the tissue microarray method. Staining intensity was determined by calculating an intensity reactivity score (IRS). Staining intensity and the localization of expression within tumor cells (nuclear or cytoplasmic) were correlated with overall, disease-specific, and recurrence-free survival. RESULTS: The majority of cancers were localized in the oropharynx (61.1%). In univariate analysis, patients who had OSCC and strong Bmi-1 expression (IRS >10) had worse outcomes compared with patients who had low and moderate Bmi-1 expression (P = .008; hazard ratio [HR], 1.82; 95% confidence interval [CI], 1.167-2.838); this correlation was also observed for atypical cytoplasmic Bmi-1 expression (P = .001; HR, 2.164; 95% CI, 1.389-3.371) and for negative p16 expression (P < .001; HR, 0.292; 95% CI, 0.178-0.477). The combination of both markers, as anticipated, had an even stronger correlation with overall survival (P < .001; HR, 8.485; 95% CI, 4.237-16.994). Multivariate analysis demonstrated significant results for patients with oropharyngeal cancers, but not for patients with oral cavity tumors: Tumor classification (P = .011; HR, 1.838; 95%CI, 1.146-2.947) and the combined marker expression patterns (P < .001; HR, 6.254; 95% CI, 2.869-13.635) were correlated with overall survival, disease-specific survival (tumor classification: P = .002; HR, 2.807; 95% CI, 1.477-5.334; combined markers: P = .002; HR, 5.386; 95% CI, 1.850-15.679), and the combined markers also were correlated with recurrence-free survival (P = .001; HR, 8.943; 95% CI, 2.562-31.220). CONCLUSIONS: Cytoplasmic Bmi-1 expression, an absence of p16 expression, and especially the combination of those 2 predictive markers were correlated negatively with disease-specific and recurrence-free survival in patients with oropharyngeal cancer. Therefore, the current results indicate that these may be applicable as predictive markers in combination with other factors to select patients for more aggressive treatment and follow-up. Cancer 2011;. © 2011 American Cancer Society.
Resumo:
Neuroligins (NLs) constitute a family of cell-surface proteins that interact with neurexins (beta-Nxs), another class of neuronal cell-surface proteins, one of each class functioning together in synapse formation. The localization of the various neurexins and neuroligins, however, has not yet been clarified in chicken. Therefore, we studied the expression patterns of neurexin-1 (Nx-1) and neuroligin-1 and -3 during embryonic development of the chick retina and brain by reverse-transcriptase polymerase chain reaction (RT-PCR) and in situ hybridization (ISH). While neurexin-1 increased continuously in both brain and retina, the expression of both neuroligins was more variable. As shown by ISH, Nx-1 is expressed in the inner half retina along with differentiation of ganglion and amacrine cells. Transcripts of NL-1 were detected as early as day 4 and increased with the maturation of the different brain regions. In different brain regions, NL-1 showed a different time regulation. Remarkably, neuroligin-3 was entirely absent in retina. This study indicates that synaptogenetic processes in brain and retina use different molecular machineries, whereby the neuroligins might represent the more distinctly regulated part of the neurexin-neuroligin complexes. Noticeably, NL-3 does not seem to be involved in the making of retinal synapses.
Resumo:
PURPOSE: Neutral endopeptidase (CD10), an ectopeptidase bound to the cell surface, is thought to be a potential prognostic marker for prostate cancer. EXPERIMENTAL DESIGN: Prostate cancer patients (N = 3,261) treated by radical prostatectomy at a single institution were evaluated by using tissue microarray. Follow-up data were available for 2,385 patients. The cellular domain (membranous, membranous-cytoplasmatic, and cytoplasmatic only) of CD10 expression was analyzed immunohistochemically and correlated with various clinical and histopathologic features of the tumors. RESULTS: CD10 expression was detected in 62.2% of cancer samples and occurred preferentially in higher Gleason pattern (P < 0.0001). CD10 expression positively correlated with adverse tumor features such as elevated preoperative prostate-specific antigen (PSA), higher Gleason score, and advanced stage (P < 0.0001 each). Survival analyses showed that PSA recurrence was significantly associated with the staining pattern of CD10 expression. Outcome significantly declined from negative over membranous, membranous-cytoplasmatic, to exclusively cytoplasmatic CD10 expression (P < 0.0001). In multivariate analysis, CD10 expression was an independent predictor for PSA failure (P = 0.0343). CONCLUSIONS: CD10 expression is an unfavorable independent risk factor in prostate cancer. The subcellular location of CD10 protein is associated with specific clinical courses, suggesting an effect on different important biological properties of prostate cancer cells. The frequent expression of CD10 in prostate cancer and the strong association of CD10 with unfavorable tumor features may qualify this biomarker for targeted therapies.
Resumo:
Proline transporters (ProTs) mediate transport of the compatible solutes Pro, glycine betaine, and the stress-induced compound gamma-aminobutyric acid. A new member of this gene family, AtProT3, was isolated from Arabidopsis (Arabidopsis thaliana), and its properties were compared to AtProT1 and AtProT2. Transient expression of fusions of AtProT and the green fluorescent protein in tobacco (Nicotiana tabacum) protoplasts revealed that all three AtProTs were localized at the plasma membrane. Expression in a yeast (Saccharomyces cerevisiae) mutant demonstrated that the affinity of all three AtProTs was highest for glycine betaine (K-m = 0.1-0.3 mM), lower for Pro (K-m = 0.4-1 mM), and lowest for gamma-aminobutyric acid (K-m = 4-5 mM). Relative quantification of the mRNA level using real-time PCR and analyses of transgenic plants expressing the beta-glucuronidase (uidA) gene under control of individual AtProT promoters showed that the expression pattern of AtProTs are complementary. AtProT1 expression was found in the phloem or phloem parenchyma cells throughout the whole plant, indicative of a role in long-distance transport of compatible solutes. beta-Glucuronidase activity under the control of the AtProT2 promoter was restricted to the epidermis and the cortex cells in roots, whereas in leaves, staining could be demonstrated only after wounding. In contrast, AtProT3 expression was restricted to the above-ground parts of the plant and could be localized to the epidermal cells in leaves. These results showed that, although intracellular localization, substrate specificity, and affinity are very similar, the transporters fulfill different roles in planta.
Resumo:
Many studies in the field of cell-based cartilage repair have focused on identifying markers associated with the differentiation status of human articular chondrocytes (HAC) that could predict their chondrogenic potency. A previous study from our group showed a correlation between the expression of S100 protein in HAC and their chondrogenic potential. The aims of the current study were to clarify which S100 proteins are associated with HAC differentiation status and to provide an S100-based assay for measuring HAC chondrogenic potential. The expression patterns of S100A1 and S100B were investigated in cartilage and in HAC cultured under conditions promoting dedifferentiation (monolayer culture) or redifferentiation (pellet culture or BMP4 treatment in monolayer culture), using characterized antibodies specifically recognizing S100A1 and S100B, by immunohistochemistry, immunocytochemistry, Western blot, and gene expression analysis. S100A1 and S100B were expressed homogeneously in all cartilage zones, and decreased during dedifferentiation. S100A1, but not S100B, was re-expressed in pellets and co-localized with collagen II. Gene expression analysis revealed concomitant modulation of S100A1, S100B, collagen type II, and aggrecan: down-regulation during monolayer culture and up-regulation upon BMP4 treatment. These results strongly support an association of S100A1, and to a lesser extent S100B, with the HAC differentiated phenotype. To facilitate their potential application, we established an S100A1/B-based flow cytometry assay for accurate assessment of HAC differentiation status. We propose S100A1 and S100B expression as a marker to develop potency assays for cartilage regeneration cell therapies, and as a redifferentiation readout in monolayer cultures aiming to investigate stimuli for chondrogenic induction.
Resumo:
A system of cluster analysis for genome-wide expression data from DNA microarray hybridization is described that uses standard statistical algorithms to arrange genes according to similarity in pattern of gene expression. The output is displayed graphically, conveying the clustering and the underlying expression data simultaneously in a form intuitive for biologists. We have found in the budding yeast Saccharomyces cerevisiae that clustering gene expression data groups together efficiently genes of known similar function, and we find a similar tendency in human data. Thus patterns seen in genome-wide expression experiments can be interpreted as indications of the status of cellular processes. Also, coexpression of genes of known function with poorly characterized or novel genes may provide a simple means of gaining leads to the functions of many genes for which information is not available currently.
Resumo:
We set out to define patterns of gene expression during kidney organogenesis by using high-density DNA array technology. Expression analysis of 8,740 rat genes revealed five discrete patterns or groups of gene expression during nephrogenesis. Group 1 consisted of genes with very high expression in the early embryonic kidney, many with roles in protein translation and DNA replication. Group 2 consisted of genes that peaked in midembryogenesis and contained many transcripts specifying proteins of the extracellular matrix. Many additional transcripts allied with groups 1 and 2 had known or proposed roles in kidney development and included LIM1, POD1, GFRA1, WT1, BCL2, Homeobox protein A11, timeless, pleiotrophin, HGF, HNF3, BMP4, TGF-α, TGF-β2, IGF-II, met, FGF7, BMP4, and ganglioside-GD3. Group 3 consisted of transcripts that peaked in the neonatal period and contained a number of retrotransposon RNAs. Group 4 contained genes that steadily increased in relative expression levels throughout development, including many genes involved in energy metabolism and transport. Group 5 consisted of genes with relatively low levels of expression throughout embryogenesis but with markedly higher levels in the adult kidney; this group included a heterogeneous mix of transporters, detoxification enzymes, and oxidative stress genes. The data suggest that the embryonic kidney is committed to cellular proliferation and morphogenesis early on, followed sequentially by extracellular matrix deposition and acquisition of markers of terminal differentiation. The neonatal burst of retrotransposon mRNA was unexpected and may play a role in a stress response associated with birth. Custom analytical tools were developed including “The Equalizer” and “eBlot,” which contain improved methods for data normalization, significance testing, and data mining.
Resumo:
The spatial and temporal expression patterns of metallothionein (MT) isoforms MT1a and MT2a were investigated in vegetative and reproductive tissues of untreated and copper-treated Arabidopsis by in situ hybridization and by northern blotting. In control plants, MT1a mRNA was localized in leaf trichomes and in the vascular tissue in leaves, roots, flowers, and germinating embryos. In copper-treated plants, MT1a expression was also observed in the leaf mesophyll and in vascular tissue of developing siliques and seeds. In contrast, MT2a was expressed primarily in the trichomes of both untreated and copper-treated plants. In copper-treated plants, MT2a mRNA was also expressed in siliques. Northern-hybridization studies performed on developing seedlings and leaves showed temporal variations of MT1a gene expression but not of MT2a expression. The possible implications of these findings for the cellular roles of MTs in plants are discussed.
Resumo:
Opium poppy (Papaver somniferum) contains a large family of tyrosine/dihydroxyphenylalanine decarboxylase (tydc) genes involved in the biosynthesis of benzylisoquinoline alkaloids and cell wall-bound hydroxycinnamic acid amides. Eight members from two distinct gene subfamilies have been isolated, tydc1, tydc4, tydc6, tydc8, and tydc9 in one group and tydc2, tydc3, and tydc7 in the other. The tydc8 and tydc9 genes were located 3.2 kb apart on one genomic clone, suggesting that the family is clustered. Transcripts for most tydc genes were detected only in roots. Only tydc2 and tydc7 revealed expression in both roots and shoots, and TYDC3 mRNAs were the only specific transcripts detected in seedlings. TYDC1, TYDC8, and TYDC9 mRNAs, which occurred in roots, were not detected in elicitor-treated opium poppy cultures. Expression of tydc4, which contains a premature termination codon, was not detected under any conditions. Five tydc promoters were fused to the β-glucuronidase (GUS) reporter gene in a binary vector. All constructs produced transient GUS activity in microprojectile-bombarded opium poppy and tobacco (Nicotiana tabacum) cell cultures. The organ- and tissue-specific expression pattern of tydc promoter-GUS fusions in transgenic tobacco was generally parallel to that of corresponding tydc genes in opium poppy. GUS expression was most abundant in the internal phloem of shoot organs and in the stele of roots. Select tydc promoter-GUS fusions were also wound induced in transgenic tobacco, suggesting that the basic mechanisms of developmental and inducible tydc regulation are conserved across plant species.
Resumo:
Semaphorins and collapsins make up a family of conserved genes that encode nerve growth cone guidance signals. We have identified two additional members of the human semaphorin family [human semaphorin A(V) and human semaphorin IV] in chromosome region 3p21.3, where several small cell lung cancer (SCLC) cell lines exhibit homozygous deletions indicative of a tumor suppressor gene. Human semaphorin A(V) has 86% amino acid homology with murine semaphorin A, whereas semaphorin IV is most closely related to murine semaphorin E, with 50% homology. These semaphorin genes are approximately 70 kb apart flanking two GTP-binding protein genes, GNAI-2 and GNAT-1. In contrast, other human semaphorin gene sequences (human semaphorin III and homologues of murine semaphorins B and C) are not located on chromosome 3. Human semaphorin A(V) is translated in vitro into a 90-kDa protein, which accumulates at the endoplasmic reticulum. The human semaphorin A(V) (3.4-kb mRNA) and IV (3.9- and 2.9-kb mRNAs) genes are expressed abundantly but differentially in a variety of human neural and nonneural tissues. Human semaphorin A(V) was expressed in only 1 out of 23 SCLCs and 7 out of 16 non-SCLCs, whereas semaphorin IV was expressed in 19 out of 23 SCLCs and 13 out of 16 non-SCLCs. Mutational analysis in semaphorin A(V) revealed mutations (germ line in one case) in 3 of 40 lung cancers. Our data suggest the need to determine the function of human semaphorins A(V) and IV in nonneural tissues and their role in the pathogenesis of lung cancer.
Resumo:
During development of the vertebrate nervous system, the neural cell adhesion molecule (N-CAM) is expressed in a defined spatiotemporal pattern. We have proposed that the expression of N-CAM is controlled, in part, by proteins encoded by homeobox genes. This hypothesis has been supported by previous in vitro experiments showing that products of homeobox genes can both bind to and transactivate the N-CAM promoter via two homeodomain binding sites, HBS-I and HBS-II. We have now tested the hypothesis that the N-CAM gene is a target of homeodomain proteins in vivo by using transgenic mice containing native and mutated N-CAM promoter constructs linked to a beta-galactosidase reporter gene. Segments of the 5' flanking region of the mouse N-CAM gene were sufficient to direct expression of the reporter gene in the central nervous system in a pattern consistent with that of the endogenous N-CAM gene. For example, at embryonic day (E) 11, beta-galactosidase staining was found in postmitotic neurons in dorsolateral and ventrolateral regions of the spinal cord; at E14.5, staining was seen in these neurons throughout the spinal cord. In contrast, mice carrying an N-CAM promoter-reporter construct with mutations in both homeodomain binding sites (HBS-I and HBS-II) showed altered expression patterns in the spinal cord. At E11, beta-galactosidase expression was seen in the ventrolateral spinal cord, but was absent in the dorsolateral areas, and at E 14.5, beta-galactosidase expression was no longer detected in any cells of the cord. Homeodomain binding sites found in the N-CAM promoter thus appear to be important in determining specific expression patterns of N-CAM along the dorsoventral axis in the developing spinal cord. These experiments suggest that the N-CAM gene is an in vivo target of homeobox gene products in vertebrates.
Resumo:
Parasite proteases play key roles in several fundamental steps of the Plasmodium life cycle, including haemoglobin degradation, host cell invasion and parasite egress. Plasmodium exit from infected host cells appears to be mediated by a class of papain-like cysteine proteases called 'serine repeat antigens' (SERAs). A SERA subfamily, represented by Plasmodium falciparum SERA5, contains an atypical active site serine residue instead of a catalytic cysteine. Members of this SERAser subfamily are abundantly expressed in asexual blood stages, rendering them attractive drug and vaccine targets. In this study, we show by antibody localization and in vivo fluorescent tagging with the red fluorescent protein mCherry that the two P. berghei serine-type family members, PbSERA1 and PbSERA2, display differential expression towards the final stages of merozoite formation. Via targeted gene replacement, we generated single and double gene knockouts of the P. berghei SERAser genes. These loss-of-function lines progressed normally through the parasite life cycle, suggesting a specialized, non-vital role for serine-type SERAs in vivo. Parasites lacking PbSERAser showed increased expression of the cysteine-type PbSERA3. Compensatory mechanisms between distinct SERA subfamilies may thus explain the absence of phenotypical defect in SERAser disruptants, and challenge the suitability to develop potent antimalarial drugs based on specific inhibitors of Plasmodium serine-type SERAs.