969 resultados para Explosive ordnance disposal
Resumo:
This project focused on maximising the detection range of an eye-safe stand-off Raman system for use in detecting explosives. Investigation of the effect on detection range through differing laser parameters in this thesis provided optimal laser settings to achieve the largest possible detection range of explosives, while still remaining under the eye-safe limit.
Resumo:
The crystallization of amorphous semiconductors is a strongly exothermic process. Once initiated the release of latent heat can be sufficient to drive a self-sustaining crystallization front through the material in a manner that has been described as explosive. Here, we perform a quantitative in situ study of explosive crystallization in amorphous germanium using dynamic transmission electron microscopy. Direct observations of the speed of the explosive crystallization front as it evolves along a laser-imprinted temperature gradient are used to experimentally determine the complete interface response function (i.e., the temperature-dependent front propagation speed) for this process, which reaches a peak of 16 m/s. Fitting to the Frenkel-Wilson kinetic law demonstrates that the diffusivity of the material locally/immediately in advance of the explosive crystallization front is inconsistent with those of a liquid phase. This result suggests a modification to the liquid-mediated mechanism commonly used to describe this process that replaces the phase change at the leading amorphous-liquid interface with a change in bonding character (from covalent to metallic) occurring in the hot amorphous material.
Resumo:
In the paper new way of classifying spillways have been suggested. The various types, merits and demerits or existing spillway devices have been discussed. The considerations governing the choice of a design of a spillway have been mention. A criteria for working out the economics of spillway design has been suggested. An efficient surplus sing device has next been described and compared with other devices. In conclusion it has been suggested that the most efficient and at the same time economical arrangement will be a combination of devices. In conclusion it has been suggested will be a combination of crest gate, volute siphons and high head gates. The appendix gives a list of devices used in dams in various parts of the world.
Resumo:
High frequency three-wave nonlinear 'explosive' interaction of the surface modes of a semi-infinite beam-plasma system under no external field is investigated. The conditions that favour nonlinear instability, keep the plasma linearly stable. The beam runs parallel to the surface. If at least one of the three wave vectors of the surface modes is parallel to the beam, explosive interaction at the surface takes place after it has happened in the plasma bulk, provided the bulk waves propagate almost perpendicular to the surface and are of short wavelength. On the other hand if the bulk modes have long wavelength and propagate almost parallel to the surface, the surface modes can 'explode' first.
Resumo:
High frequency three-wave nonlinear 'explosive' interaction of the surface modes of a semi-infinite beam-plasma system under no external field is investigated. The conditions that favour nonlinear instability, keep the plasma linearly stable. The beam runs parallel to the surface. If at least one of the three wave vectors of the surface modes is parallel to the beam, explosive interaction at the surface takes place after it has happened in the plasma bulk, provided the bulk waves propagate almost perpendicular to the surface and are of short wavelength. On the other hand if the bulk modes have long wavelength and propagate almost parallel to the surface, the surface modes can 'explode' first.
Resumo:
The literature demonstrates that understanding relating to the use of materials in product design has been investigated from both engineering and design perspectives. However, none of these studies have explored the consumers’ concepts of the materials; rather they have focused on participants’ discussions of material samples. Consumers’ emotional reactions to the materials themselves or the consumers’ reaction to the durability of the materials have not been previously explored in depth. This research has investigated these issues and has found that consumers have very specific concepts about materials. Furthermore, the combinations of consumer concepts that are likely to elicit an emotional judgement by the consumer have also been identified. It was found that consumers are conscious of the durability of their products and the materials that they are made from. This knowledge contributes to the support of environmentally conscious design, as well as user-centered design knowledge and practice. An understanding of the emotion consumers attribute to the effect wear and aging had on the materials’ physical appearance has been achieved. This understanding of consumers’ emotional reactions to materials can contribute not only to design considerations but to knowledge regarding the promotion of prolonged product-user relationships.
Resumo:
A new rock mass classification scheme, the Host Rock Classification system (HRC-system) has been developed for evaluating the suitability of volumes of rock mass for the disposal of high-level nuclear waste in Precambrian crystalline bedrock. To support the development of the system, the requirements of host rock to be used for disposal have been studied in detail and the significance of the various rock mass properties have been examined. The HRC-system considers both the long-term safety of the repository and the constructability in the rock mass. The system is specific to the KBS-3V disposal concept and can be used only at sites that have been evaluated to be suitable at the site scale. By using the HRC-system, it is possible to identify potentially suitable volumes within the site at several different scales (repository, tunnel and canister scales). The selection of the classification parameters to be included in the HRC-system is based on an extensive study on the rock mass properties and their various influences on the long-term safety, the constructability and the layout and location of the repository. The parameters proposed for the classification at the repository scale include fracture zones, strength/stress ratio, hydraulic conductivity and the Groundwater Chemistry Index. The parameters proposed for the classification at the tunnel scale include hydraulic conductivity, Q´ and fracture zones and the parameters proposed for the classification at the canister scale include hydraulic conductivity, Q´, fracture zones, fracture width (aperture + filling) and fracture trace length. The parameter values will be used to determine the suitability classes for the volumes of rock to be classified. The HRC-system includes four suitability classes at the repository and tunnel scales and three suitability classes at the canister scale and the classification process is linked to several important decisions regarding the location and acceptability of many components of the repository at all three scales. The HRC-system is, thereby, one possible design tool that aids in locating the different repository components into volumes of host rock that are more suitable than others and that are considered to fulfil the fundamental requirements set for the repository host rock. The generic HRC-system, which is the main result of this work, is also adjusted to the site-specific properties of the Olkiluoto site in Finland and the classification procedure is demonstrated by a test classification using data from Olkiluoto. Keywords: host rock, classification, HRC-system, nuclear waste disposal, long-term safety, constructability, KBS-3V, crystalline bedrock, Olkiluoto
Resumo:
Explosive driven micro blast waves are generated in the laboratory using NONEL tubes. The explosive mixture coated to the inner walls of the plastic Nonel tube comprises of HMX and Aluminum ( 18mg/m). The detonation is triggered electrically to generate micro blast waves from the open end of the tube. Flow visualization and over pressure measurements have been carried out to understand the propagation dynamics of these micro-blast waves in both confined and unconfined domains. The classical cubic root law used for large scale blast correlation appears to hold good even for these micro-blasts generated in the laboratory.
Resumo:
The explosive sensitivity of methylammonium perchlorates has been investigated by differential thermal analysis, thermogravimetric analysis, mass spectrometry and explosion delay experiments. The decomposition temperature of these compounds increases in the order CH3NH3ClO4>(CH3)2NH2ClO4>(CH3)3NHClO4. The activation energy shows the reverse order, indicating thereby that the stability increases with increasing substitution. Mass spectrometric investigation, however, suggests an increasing reactivity with increasing substitution. A possible explanation for such behaviour is proposed. It appears that explosion delay is correlated with thermal decomposition and impact sensitivity.
Resumo:
The thermal and explosive characteristics of ring-substituted arylammonium perchlorates have been studied by differential thermal analysis, explosion delay, and impact-sensitivity measurements. The decomposition and dissociation temperatures, as well as activiation energy for explosion, increase with increasing basicity of the corresponding arylamine. These parameters, when plotted against σ, the Hammett substituent constant, show a linear relationship in the case of meta- and para-substituted derivatives. The results indicate that a proton transfer from arylammonium ion to perchlorate ion is involved in the decompostion and also in the explosion process of these arylammonium perchlorates.
Resumo:
Fly ash has potential application in the construction of base liners for waste containment facilities. While most of the fly ashes improve in the strength with curing, the ranges of permeabilities they attain may often not meet the basic requirement of a liner material. An attempt has been made in the present context to reduce the hydraulic conductivity by adding lime content up to 10% to two selected samples of class F fly ashes. The use of gypsum, which is known to accelerate the unconfined compressive strength by increasing the lime reactivity, has been investigated in further improving the hydraulic conductivity. Hydraulic conductivities of the compacted specimens have been determined in the laboratory using the falling head method. It has been observed that the addition of gypsum reduces the hydraulic conductivity of the lime treated fly ashes. The reduction in the hydraulic conductivity of the samples containing gypsum is significantly more for samples with high amounts of lime contents (as high as 1000 times) than those fly ashes with lower amounts of lime. However there is a relatively more increase in the strengths of the samples with the inclusion of gypsum to the fly ashes at lower lime contents. This is due to the fact that excess lime added to fly ash is not effectively converted into pozzolanic compounds. Even the presence of gypsum is observed not to activate these reactions with excess lime. On the other hand the higher amount of lime in the presence of sulphate is observed to produce more cementitious compounds which block the pores in the fly ash. The consequent reduction in the hydraulic conductivity of fly ash would be beneficial in reducing the leachability of trace elements present in the fly ash when used as a base liner. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
A novel fluoranthene based fluorescent chemosensor for the detection of picric acid (PA) at the parts per billion (ppb) level was evaluated. Static fluorescence quenching was the dominant process by intercalative pi-pi interaction between fluoranthene (S-1) and nitroaromatics.
Resumo:
Herein we report a novel fluoranthene-based fluorescent fluorophore 7,10-bis(4-bromophenyl)-8,9-bis4-(hexyloxy)phenyl]fluoranthene (S-3) and its remarkable properties in applications of explosive detection. The sensitivity towards the detection of nitroaromatics (NACs) was evaluated through fluorescence quenching in solution, vapor, and contact mode approaches. The contact mode approach using thin-layer silica chromatograp- hic plates exhibited a femtogram (1.15 fg cm(-2)) detection limit for trinitrotoluene (TNT) and picric acid (PA), whereas the solution-phase quenching showed PA detection at the 2-20 ppb level. Fluorescence lifetime measurements revealed that the quenching is static in nature and the quenching process is fully reversible. Binding energies between model binding sites of the S-3 and analyte compounds reveal that analyte molecules enter into the cavity created by substituted phenyl rings of fluoranthene and are stabilized by strong intermolecular interactions with alkyl chains. It is anticipated that the sensor S-3 could be a promising material for the construction of portable optical devices for the detection of onsite explosive nitroaromatics.