999 resultados para Explant culture


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tor mahseer (Tor tor), possess high commercial and recreational value as they are potential game as well as food fish of India. Two cell culture systems were developed from fin and heart of T. tor (Hamilton-Buchanan). The explants excised aseptically from fingerling of T. tor were cultured in Leibovitz-15 (L-15) medium with 20% fetal bovine serum (FBS). Radiation of cells started after 72 hours and 48 hours of explant attachment from caudal fin and heart respectively. Confluent monolayer of cells with heterogeneous morphology around fin explants was observed after 7-10 days, where as a homogenous confluent layer of fibroblastic cells from heart explant was observed after 12-13 days. The establishment of cell culture systems from different organs and tissues of commercial important species would facilitates in vitro research.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Given the economic importance of Jatropha curcas, and its limited availability in the wild, it would be desirable to establish plantations ofthe tree so as to obtain assured supply of raw material for extraction of phytochemicals, and seeds for production of biodiesel. However both seed propagation as well as propagation by cuttings is unsatisfactory in this tree species. Seeds have poor viability and are genetically heterozygous leading to genetic variability in terms of growth, biomass, seed yield, and oil content. Stern cuttings have poor roots and the trees are easily uprooted. Tissue culture techniques could possibly be gainfully employed in the propagation of elite plants ofJaIropha. When plant tissue is passaged through in vitro culture, there is possibility of induction of variations. An estimation of somaclonal variability is useful in a determination of culture protocols. Molecular markers could be employed to estimate the amount of variations induced in callus and regenerants by different honnonal combinations used in culture. In this context the present study aims to develop an in vitro propagation protocol for the production of plantlets and to evaluate the variation induced in callus and regenerants in comparison with mother plant by the use of molecular markers and by studying phytochemicals and bio active compounds present in callus and regenerated plants

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To investigate the role of fimbriae and flagella in the pathogenesis of avian colibacillosis, isogenic insertionally inactivated mutant strains of Escherichia coil O78:K80 strain EC34195 defective in the elaboration of type-1 and curli fimbriae and flagella were constructed by allelic exchange, Single and multiple non-fimbriate and non-flagellate mutant strains were compared to the wild-type in vitro in adherence assays with a HEp-2 cell line, a mucus-secreting cell line HT2916E, a non-mucus-secreting cell line HT2919A, tracheal explant and proximal gut explant, Mutant strains defective in the elaboration of type-1 fimbriae were significantly less adherent - in the order of 90% reduction - than the wild-type strain in all assays. Mutant strains defective in the elaboration of flagella were generally as adherent as the wild-type strain except when assayed with the mucus-secreting cell line HT2916E, for which a significant reduction of adherence - of the order of 90% - compared with the wild-type strain was observed. Mutant strains defective for the elaboration of curb fimbriae adhered as well as the wild-type strain in all assays, except when assayed in tests with gut explant tissue for which a significant reduction of adherence - of the order of 80% - compared with the wild-type strain was observed, Adherence to explants was to epithelial, not serous, surfaces and was 10-fold greater to tracheal than to gut explants, Together, these data support the hypothesis that type-1 fimbriae are significant factors in adherence, aided by flagella for penetration of mucus and curli fimbriae for adherence to the gut.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rat ileal air interface and submerged explant models were developed and used to compare the adhesion of Salmonella enterica var Enteritidis wild-type strains with that of their isogenic single and multiple deletion mutants. The modified strains studied were defective for fimbriae, flagella, motility or chemotaxis and binding was assessed on tissues with and without an intact mucus layer. A multiple afimbriate/aflagellate (fim(-)/fla(-)) strain, a fimbriate but aflagellate (fla(-)) strain and a fimbriate/flagellate but non-motile (mot(-)) strain bound significantly less extensively to the explants than the corresponding wild-type strains. With the submerged explant model this difference was evident in tissues with or without a mucus layer, whereas in the air interface model it was observed only in tissues,vith an intact mucus layer. A smooth swimming chemotaxis-defective (che(-)) strain and single or multiple afimbriate strains bound to explants as well as their corresponding wild-type strain. This suggests that under the present experimental conditions fimbriae were not essential for attachment of S. enterica var Enteritidis to rat ileal explants, However; the possession of active flagella did appear to be an important factor. in enabling salmonellae to penetrate the gastrointestinal mucus layer and attach specifically to epithelial cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tillandsia gardneri is a bromeliad with ornamental value and a wide geographical distribution over Brazil. However, due to habitat loss and illegal overcollection in the wild it is included as a vulnerable species in the official list of endangered plants of the State of Rio Grande do Sul, Brazil. The development of a protocol for T. gardneri seed propagation in vitro may be useful for reintroducing plants in their natural habitats, and for germplasm conservation. A difficult problem encountered during the establishment of an in vitro culture is explants disinfection, especially when working with endangered species, from which explant availability is restricted. Thus, the establishment of a sterilization protocol is crucial for the initiation and success of a micropropagation system for T. gardneri. The objective of this study was to evaluate the effect of sodium hypochlorite concentration and exposure time in seed and seedling surface disinfection, tissue sensitivity and development. Sodium hypochlorite solutions (10 or 20%/5, 10 or 15 min; 25%/5 or 10 min; and 50%/5 min) were effective in eliminating seed superficial contaminants. There was no significant difference among the effective sterilization treatments in relation to seed germination (%), and seedling length and number of leaves, after 120 days in vitro. Also, no damage to seed and seedling tissues were observed. Surface sterilization of seedlings, for initiation of an in vitro culture, required higher concentrations of sodium hypochlorite (25%/15 min; 20 or 50%/5, 10 or 15 min; and 40%/5 and 10 min) for controlling fungal and yeast contamination, compared to seed sterilization. No significant differences among these treatments were found in relation to seedling length and number of leaves, after 60 days in vitro.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[EN] Plant Tissue Culture, also called “micropropagation”, is the propagation of plants from different tissues (or explants) in a shorter time than conventional propagation, making use of the ability that many plant cells have to regenerate a whole plant (totipotency).There are two alternative mechanisms by which an explant can regenerate an entire plant, namely organogenesis and somatic embryogenesis. Since the last decades, the number of higher terrestrial plants species from which these techniques have been successfully applied has continually increased. However, few attempts have been carried out in marine plants. Previous seagrasses authors have focused their studies on i) vegetative propagation of rhizome fragments as explants in Ruppia maritima, Halophila engelmannii, Cymodocea nodosa and Posidonia oceanica; ii) culture of meristems in Heterozostera tasmanica, C. nodosa or P. oceanica; and iii) culture of germinated seeds on aseptic conditions, in Thalassia testudinum, H. ovalis, P. coriacea, P. oceanica, and H. decipiens. All these studies determine the most adequate culture medium for each species (seawater, nutrients, vitamins, carbon sources, etc...), often supplemented with different plant growth regulators and the necessary conditions for the culture maintenance, such as light and temperature. On the other hand, several studies have previously established protocols for cell or protoplast isolation in the species Zostera marina, Z. muelleri, P. oceanica, and C. nodosa, using shoots collected from natural meadows as original vegetal source, but further cell growth was never accomplished. Due to the absence of somatic embryogenesis or organogenetic studies in seagrasses we wonder: IS THE SUCCESSFUL APPLICATION OF TISSUE CULTURE TECHNIQUES POSSIBLE IN SEAGRASSES?

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adverse effects of cDNA and oligonucleotide delivery methods have not yet been systematically analyzed. We introduce a protocol to monitor toxic effects of two non-viral lipid-based gene delivery protocols using CNS primary tissue. Cell membrane damage was monitored by quantifying cellular uptake of propidium iodide and release of cytosolic lactate dehydrogenase to the culture medium. Using a liposomal transfection reagent, cell membrane damage was already seen 24 hr after transfection. Nestin-positive target cells, which were used as morphological correlate, were severely diminished in some areas of the cultures after liposomal transfection. In contrast, the non-liposomal transfection reagent revealed no signs of toxicity. This approach provides easily accessible information of transfection-associated toxicity and appears suitable for prescreening of transfection reagents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a fluorescence-lifetime based method for monitoring cell and tissue activity in situ, during cell culturing and in the presence of a strong autofluorescence background. The miniature fiber-optic probes are easily incorporated in the tight space of a cell culture chamber or in an endoscope. As a first application we monitored the cytosolic calcium levels in porcine tracheal explant cultures using the Calcium Green-5N (CG5N) indicator. Despite the simplicity of the optical setup we are able to detect changes of calcium concentration as small as 2.5 nM, with a monitoring time resolution of less than 1 s.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tenascin-C (TNC) is a multidomain extracellular matrix protein that contributes to organogenesis and tumorgenesis. To elucidate its developmental function in the context of TNC deficiency, lung lobes of TNC null mice were obtained at Embryonic Days E11.5 and E12.5 and cultured for 3 d. In lung explants of homozygote TNC-deficient embryos (E12.5) the number of future airway branches was reduced by 36% as compared with wild-type. In heterozygote explants only half of the reduction (18%) was observed. No significant alteration, neither of the explant growth nor of the pattern of airway branching, was noticed in TNC-null explants. However, the terminal endbuds of the transgenic explants were enlarged. The results are supported by a morphologic investigation at Postnatal Day P2, where the airspaces of TNC-deficient lungs appeared larger than in wild-type lungs. Taken together, our results represent the first developmental phenotype of TNC-null mice. We conclude that TNC takes part in the control of fetal lung branching, and that not only the presence of TNC but also its amount is important. Because TNC is predominantly expressed at the growing tip of the future airways, we hypothesize that TNC promotes the penetration into the surrounding mesenchyme and the branching of the growing airways.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this study was to characterize organ culture of human neuroretina and to establish survival and early degeneration patterns of neural and glial cells. Sixteen neuroretina explants were prepared from 2 postmortem eyes of 2 individuals. Four explants were used as fresh retina controls, and 12 were evaluated at 3, 6, and 9 days of culture. Neuroretina explants (5 × 5 mm) were cultured in Transwell® dishes with the photoreceptor layer facing the supporting membrane. Culture medium (Neurobasal A-based) was maintained in contact with the membrane beneath the explant. Cryostat and ultrathin sections were prepared for immunohistochemistry and electron microscopy. Neuroretinal modifications were evaluated after toluidine blue staining and after immunostaining for neuronal and glial cell markers. Ultrastructural changes were analyzed by electron microscopy. From 0 to 9 days in culture, there was progressive retinal degeneration, including early pyknosis of photoreceptor nuclei, cellular vacuolization in the ganglion cell layer, decrease of both plexiform layer thicknesses, disruption and truncation of photoreceptor outer segments (OS), and marked reduction in the number of nuclei at both nuclear layers where the cells were less densely packed. At 3 days there was swelling of cone OS with impairment of pedicles, loss of axons and dendrites of horizontal and rod bipolar cells that stained for calbindin (CB) and protein kinase C (PKC-α), respectively. After 9 days, horizontal cells were pyknotic and without terminal tips. There were similar degenerative processes in the outer plexiform layer for rod bipolar cells and loss of axon terminal lateral varicosities in the inner plexiform layer. Glial fibrillary acidic protein (GFAP) staining did not reveal a dramatic increase of gliosis in Müller cells. However, some Müller cells were CB immunoreactive at 6 days of culture. Over 9 days of culture, human neuroretina explants underwent morphological changes in photoreceptors, particularly the OS and axon terminals, and in postsynaptic horizontal and bipolar cells. These early changes, not previously described in cultured human samples, reproduce some celullar modifications after retinal damage. Thus, this model may be suitable to evaluate therapeutic agents during retinal degeneration processes.