975 resultados para European shelf


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Monitoring the abundance and distribution of taxa is essential to assess their contribution to ecosystem processes. For marine taxa that are difficult to study or have long been perceived of little ecological importance, quantitative information is often lacking. This is the case for jellyfish (medusae and other gelatinous plankton). In the present work, 4 years of scyphomedusae by-catch data from the 2007-2010 Irish Sea juvenile gadoid fish survey were analysed with three main objectives: (1) to provide quantitative and spatially-explicit species-specific biomass data, for a region known to have an increasing trend in jellyfish abundance; (2) to investigate whether year-to-year changes in catch-biomass are due to changes in the numbers or in the size of medusa (assessed as the mean mass per individual), and (3) to determine whether inter-annual variation patterns are consistent between species and water masses. Scyphomedusae were present in 97% of samples (N=306). Their overall annual median catch-biomass ranged from 0.19 to 0.92gm-3 (or 8.6 to 42.4gm-2). Aurelia aurita and Cyanea spp. (Cyanea lamarckii and Cyanea capillata) made up 77.7% and 21.5% of the total catch-biomass respectively, but species contributions varied greatly between sub-regions and years. No consistent pattern was detected between the distribution and inter-annual variations of the two genera, and contrasting inter-annual patterns emerged when considering abundance either as biomass or as density. Significantly, A.aurita medusae were heavier in stratified than in mixed waters, which we hypothesize may be linked to differences in timing and yield of primary and secondary productions between water masses. These results show the vulnerability of time-series from bycatch datasets to phenological changes and highlight the importance of taking species- and population-specific distribution patterns into account when integrating jellyfish into ecosystem models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A transect from the bathyal to proximal shelf facies of the Boreal Realm was investigated to compare spatial and temporal distribution changes of calcareous dinoflagellate cysts (c-dinocysts) throughout the mid-Cenomanian in order to gain information on the ecology of these organisms. Pithonelloideae dominated the cyst assemblages to more than 95% on the shelf, a prevalence that can be observed throughout most of the Upper Cretaceous. The affinity of this group with the dinoflagellates, which is still controversially discussed, can be confirmed, based on evidence from morphological features and distribution patterns. The consistent prevalence of Pithonella sphaerica and P. ovalis in c-dinocyst assemblages throughout the Upper Cretaceous indicates that they were produced more frequently than cysts of the other species and might, therefore, represent a vegetative dinoflagellate life stage. P. sphaerica and P. ovalis are interpreted as eutrophic species. P. sphaerica is the main species in a marginal-shelf upwelling area, offshore Fennoscandia. Here, sedimentary cyclicity appears to have been reduced to the strongest light/dark changes, while in the outer shelf sediments, light/dark cycles are well-developed and show pronounced temporal assemblage changes. Cyclic fluctuations in the P. sphaerica / P. ovalis ratio reflect shifts of the preferred facies zones and indicate changes in surface mixing patterns. During periods of enhanced surface mixing most parts of the shelf were well-ventilated, and nutrient-enriched surface waters led to high productivity and dominance of the Pithonelloideae. These conditions on the shelf contrasted with those in the open ocean, where more oligotrophic and probably stratified waters prevailed, and an assemblage with very few Pithonelloideae and dominance of Cubodinellum renei and Orthopithonella ? gustafsonii was characteristic. While orbitally-forced light/dark sedimentary cyclicity of the shelf sections was mainly related to surface-water carbonate productivity changes, no cyclic modulation of productivity was observed in the oceanic profile. Therefore, dark layer formation in the open ocean was predominantly controlled by the cyclic establishment of anoxic bottom water conditions. Orbitally-forced interruptions in mixing on the shelf resulted in cyclic periods of stratification and oligotrophy in the surface waters, an expansion of oceanic species to the outer shelf, and a shelfward shift of pithonelloid-facies zones, which were probably related to shelfward directed oceanic ingressions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Biostratigraphical, taxonomical, and palaeocological results were obtained from Oxfordian to Tithonian foraminifers of the Northern and Southern Atlantic Ocean boreholes of the DSDP Legs 1, 11, 36, 41, 44, 50, and 79. An oversight on the cored Jurassic sections of the DSDP Legs 79 and the corresponding foraminiferal descriptions are given. The reddish brown, clayey and carbonaceous Cat Gap Formation (Oxfordian to Tithonian) of the Northern Atlantic Ocean, rich in radiolarians, yields less or more uniform, in most cases allochthonous foraminiferal faunas of Central European shelf character. No Callovian and Upper Tithonian foraminiferaI zones can be established. The zone of Pseudomarssonella durnortieri covers the Oxfordian/Kimmeridgian, the zone of Neobulimina atlantica the Kimmeridgian/Lower Tithonian interval. Characteristic foraminiferal faunas are missing since the Upper Tithonian to Valanginian for reason of a widely distributed regression which caused hiatuses observed all over the Northern Atlantic Ocean and in parts of Europe. The Upper Jurassic cannot be subdivided into single stages by foraminiferal biostratigraphy alone. The fovaminiferal zones established by Moullad (1984) covering a Callovian-Tithonian interval may be of some local importance in the Tethyan realm: It has too long-ranging foraminiferal species to be used as index marker in the word-wide DSDP boreholes. Some taxonomical confusion is caused because in former publications some foraminiferal species have got different names both in the Jurassic and Cretaceous. The foraminiferal biostratigraphy of drilled sections from DSDP boreholes is restricted by the drilling technique and for palaeo-oceanographical, biological, and geological reasons. Foraminiferal faunas from the DSDP originally described as ,,bathyal, or ,,abyssal,, have to be derived from shallower water. This contrasts the palaeo-water depths of 3000-4000 m which result from sedimentological and palaeo-geographical investigations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The marine laboratories in Plymouth have sampled at two principle sites in the Western English Channel for over a century in open-shelf (station E1; 50° 02'N, 4° 22'W) and coastal (station L4; 50° 15'N, 4° 13'W) waters. These stations are seasonally stratified from late-April until September, and the variable biological response is regulated by subtle variations in temperature, light, nutrients and meteorology. Station L4 is characterized by summer nutrient depletion, although intense summer precipitation, increasing riverine input to the system, results in pulses of increased nitrate concentration and surface freshening. The winter nutrient concentrations at E1 are consistent with an open-shelf site. Both stations have a spring and autumn phytoplankton bloom; at station E1, the autumn bloom tends to dominate in terms of chlorophyll concentration. The last two decades have seen a warming of around 0.6°C per decade, and this is superimposed on several periods of warming and cooling over the past century. In general, over the Western English Channel domain, the end of the 20th century was around 0.5°C warmer than the first half of the century. The warming magnitude and trend is consistent with other stations across the north-west European Shelf and occurred during a period of reduced wind stress and increased levels of insolation (+20%); these are both correlated with the larger scale climatic forcing of the North Atlantic Oscillation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The marine laboratories in Plymouth have sampled at two principle sites in the Western English Channel for over a century in open-shelf (station E1; 50° 02'N, 4° 22'W) and coastal (station L4; 50° 15'N, 4° 13'W) waters. These stations are seasonally stratified from late-April until September, and the variable biological response is regulated by subtle variations in temperature, light, nutrients and meteorology. Station L4 is characterized by summer nutrient depletion, although intense summer precipitation, increasing riverine input to the system, results in pulses of increased nitrate concentration and surface freshening. The winter nutrient concentrations at E1 are consistent with an open-shelf site. Both stations have a spring and autumn phytoplankton bloom; at station E1, the autumn bloom tends to dominate in terms of chlorophyll concentration. The last two decades have seen a warming of around 0.6°C per decade, and this is superimposed on several periods of warming and cooling over the past century. In general, over the Western English Channel domain, the end of the 20th century was around 0.5°C warmer than the first half of the century. The warming magnitude and trend is consistent with other stations across the north-west European Shelf and occurred during a period of reduced wind stress and increased levels of insolation (+20%); these are both correlated with the larger scale climatic forcing of the North Atlantic Oscillation.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

he early late Cretaceous (Cenomanian-early Turonian) is thought to have been one of the warmest periods of the Phanerozoic. This period was characterised by tropical sea surface temperatures of up to 36 °C and a pole-to-equator-gradient of less than 10 °C. The subsequent Turonian-Maastrichtian was characterised by a continuous climatic cooling, peaking in the Maastrichtian. This climatic cooling and the resulting palaeoceanographic changes had an impact on planktic primary producer communities including calcareous nannofossils. In order to gain a better understanding of these Cenomanian-Maastrichtian palaeoceanographic changes, calcareous nannofossils have been studied from the proto North Atlantic (Goban Spur, DSDP Sites 549, 551). In order to see potential differences between open oceanic and shelf dwelling nannofossils, the data from Goban Spur have been compared to findings from the European shelf (northern Germany). A total of 77 samples from Goban Spur were studied for calcareous nannofossils revealing abundant (mean 6.2 billion specimens/g sediment) and highly diverse (mean 63 species/sample) nannofossil assemblages. The dominant taxa are Watznaueria spp. (mean 30.7%), Prediscosphaera spp. (mean 18.3%), Zeugrhabdotus spp. (mean 8.3%), Retecapsa spp. (mean 7.2%) and Biscutum spp. (mean 6.6%). The Cenomanian assemblages of both Goban Spur (open ocean) and Wunstorf (shelf) are characterised by elevated abundances of high fertility taxa like Biscutum spp., Zeugrhabdotus spp. and Tranolithus orionatus. Early Turonian to Maastrichtian calcareous nannofossil assemblages of Goban Spur are, however, quite different to those described from European sections. Oceanic taxa like Watznaueria spp., Retecapsa spp. and Cribrosphearella ehrenbergii dominate in Goban Spur whereas the fertility indicators Biscutum spp. and T. orionatus are more abundant in the European shelf assemblages. This shift from a homogeneous distribution of calcareous nannofossils in the Cenomanian towards a heterogeneous one in the Turonian-Maastrichtian implies a change of the ocean circulation. The "eddy ocean" system of the Cenomanian was replaced by an oceanic circulation similar to the modern one in the Turonian-Maastrichtian, caused by the cooling. The increased pole-to-equator-gradients resulted in an oceanic circulation similar to the modern one.