864 resultados para Euler discretization
Resumo:
L'FME dedica el curs acadèmic 2006-2007 a la figura del matemàtic suís Leonhard Euler, una de les ments més importants de la història, comparable a Gauss o Arquímedes. La lliçó inaugural va anar a càrrec d'Enric Fossas, catedràtic i director de l'Institut d'Organització i Control de Sistemes Industrials de la UPC
Resumo:
The structure of the electric double layer in contact with discrete and continuously charged planar surfaces is studied within the framework of the primitive model through Monte Carlo simulations. Three different discretization models are considered together with the case of uniform distribution. The effect of discreteness is analyzed in terms of charge density profiles. For point surface groups,a complete equivalence with the situation of uniformly distributed charge is found if profiles are exclusively analyzed as a function of the distance to the charged surface. However, some differences are observed moving parallel to the surface. Significant discrepancies with approaches that do not account for discreteness are reported if charge sites of finite size placed on the surface are considered.
Resumo:
In this paper, we present view-dependent information theory quality measures for pixel sampling and scene discretization in flatland. The measures are based on a definition for the mutual information of a line, and have a purely geometrical basis. Several algorithms exploiting them are presented and compare well with an existing one based on depth differences
On the development of an unstructured grid solver for inert and reactive high speed flow simulations
Resumo:
An unstructured grid Euler solver for reactive compressible flow applications is presented. The method is implemented in a cell centered, finite volume context for unstructured triangular grids. Three different schemes for spatial discretization are implemented and analyzed. Time march is implemented in a time-split fashion with independent integrators for the flow and chemistry equations. The capability implemented is tested for inert flows in a hypersonic inlet and for inert and reactive supersonic flows over a 2-D wedge. The results of the different schemes are compared with each other and with independent calculations using a structured grid code. The strengths and the possible weaknesses of the proposed methods are discussed.
Resumo:
Products developed at industries, institutes and research centers are expected to have high level of quality and performance, having a minimum waste, which require efficient and robust tools to numerically simulate stringent project conditions with great reliability. In this context, Computational Fluid Dynamics (CFD) plays an important role and the present work shows two numerical algorithms that are used in the CFD community to solve the Euler and Navier-Stokes equations applied to typical aerospace and aeronautical problems. Particularly, unstructured discretization of the spatial domain has gained special attention by the international community due to its ease in discretizing complex spatial domains. This work has the main objective of illustrating some advantages and disadvantages of numerical algorithms using structured and unstructured spatial discretization of the flow governing equations. Numerical methods include a finite volume formulation and the Euler and Navier-Stokes equations are applied to solve a transonic nozzle problem, a low supersonic airfoil problem and a hypersonic inlet problem. In a structured context, these problems are solved using MacCormacks implicit algorithm with Steger and Warmings flux vector splitting technique, while, in an unstructured context, Jameson and Mavriplis explicit algorithm is used. Convergence acceleration is obtained using a spatially variable time stepping procedure.
Resumo:
Recorrido por la biografía del matemático suizo Leonhard Euler. El artículo se estructura en base a los diferentes periodos de la vida del científico y sus aportaciones en el mundo de las matemáticas, sobretodo en el campo del álgebra.
Resumo:
Se muestran algunas de las teorías del matemático Leonhard Euler..
Resumo:
Se estudia la teoría de grafos en relación con el teorema de Euler. La teoría de grafos se refiere a la teoría de conjuntos relativa a las relaciones binarias de un conjunto numerable consigo mismo. Esta teoría posee un vasto campo de aplicaciones en Física, Economía, Teoría de la Información, Programación Lineal, Transportas, Psicología, e incluso en ciertos dominios del arte. Se pretende realizar un trabajo que sirva como seminario optativo para los alumnos de COU, que presente a los alumnos un teorema clásico de geometría mediante la teoría de grafos, un aspecto bastante olvidado en los programas. Se utilizan los métodos y el lenguaje de la teoría de grafos para demostrar el teorema de Euler, que liga caras, vértices y aristas de un poliedro regular. Para todo ello en primer lugar se sistematizan una serie de conceptos previos, se analizan las propiedades de distintos tipos de grafos, y por último, se realizan demostraciones.
Resumo:
In this paper, we present view-dependent information theory quality measures for pixel sampling and scene discretization in flatland. The measures are based on a definition for the mutual information of a line, and have a purely geometrical basis. Several algorithms exploiting them are presented and compare well with an existing one based on depth differences
Resumo:
In this paper a cell by cell anisotropic adaptive mesh technique is added to an existing staggered mesh Lagrange plus remap finite element ALE code for the solution of the Euler equations. The quadrilateral finite elements may be subdivided isotropically or anisotropically and a hierarchical data structure is employed. An efficient computational method is proposed, which only solves on the finest level of resolution that exists for each part of the domain with disjoint or hanging nodes being used at resolution transitions. The Lagrangian, equipotential mesh relaxation and advection (solution remapping) steps are generalised so that they may be applied on the dynamic mesh. It is shown that for a radial Sod problem and a two-dimensional Riemann problem the anisotropic adaptive mesh method runs over eight times faster.