993 resultados para EuZn co-doping
Resumo:
This letter reports on the magnetic properties of Ti(1-x)Co(x)O(2) anatase phase nanopowders with different Co contents. It is shown that oxygen vacancies play an important role in promoting long-range ferromagnetic order in the material studied in addition to the transition-metal doping. Furthermore, the results allow ruling out the premise of a strict connection between Co clustering and the ferromagnetism observed in the Co:TiO(2) anatase system.
Resumo:
Here we report on the structural, optical, electrical and magnetic properties of Co-doped and (Co,Mo)-codoped SnO2 thin films deposited on r-cut sapphire substrates by pulsed laser deposition. Substrate temperature during deposition was kept at 500 degrees C. X-ray diffraction analysis showed that the undoped and doped films are crystalline with predominant orientation along the [1 0 1] direction regardless of the doping concentration and doping element. Optical studies revealed that the presence of Mo reverts the blue shift trend observed for the Co-doped films. For the Co and Mo doping concentrations studied, the incorporation of Mo did not contribute to increase the conductivity of the films or to enhance the ferromagnetic order of the Co-doped films. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
This paper reports on the structural and optical properties of Co-doped TiO2 thin films grown onto (0001)Al2O3 substrates by non-reactive pulsed laser deposition (PLD) using argon as buffer gas. It is shown that by keeping constant the substrate temperature at as low as 310 degrees C and varying only the background gas pressure between 7 Pa and 70 Pa, it is possible to grow either epitaxial rutile or pure anatase thin films, as well as films with a mixture of both polymorphs. The optical band gaps of the films are red shifted in comparison with the values usually reported for undoped TiO2, which is consistent with n-type doping of the TiO2 matrix. Such band gap red shift brings the absorption edge of the Co-doped TiO2 films into the visible region, which might favour their photocatalytic activity. Furthermore, the band gap red shift depends on the films' phase composition, increasing with the increase of the Urbach energy for increasing rutile content. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Agência Financiadora - Fundação para a Ciência e Tecnologia - PTDC/CTM NAN/113021/2009
Resumo:
The major objective of this study was to investigate the effects of several days of intense exercise on the growth hormone marker approach to detect doping with human growth hormone (hGH). In addition we investigated the effect of changes in plasma volume on the test. Fifteen male athletes performed a simulated nine-day cycling stage race. Blood samples were collected twice daily over a period of 15 days (stage race + three days before and after). Plasma volumes were estimated by the optimized CO Rebreathing method. IGF-1 and P-III-NP were analyzed by Siemens Immulite and Cisbio Assays, respectively. All measured GH 2000 scores were far below the published decision limits for an adverse analytical finding. The period of exercise did not increase the GH-scores; however the accompanying effect of the increase in Plasma Volume yielded in essentially lower GH-scores. We could demonstrate that a period of heavy, long-term exercise with changes in plasma volume does not interfere with the decision limits for an adverse analytical finding. Copyright © 2014 John Wiley & Sons, Ltd.
Resumo:
An open cell configuration has been employed for the photoacoustic measurement of the thermal diffusivity of undoped Bi2Se3 crystals and Bi2Se3 crystals doped with various concentrations of Te. The amplitude of the photoacoustic signal obtained under heat transmission configuration as a function of chopping frequency is used to evaluate the numerical value of thermal diffusivity, α. Doped samples show a substantial reduction in the value of α compared to undoped samples. The variations in the thermal diffusivity of the doped samples are explained in terms of the phonon assisted heat transfer mechanism. It is seen that α is very sensitive to structural variations arising from doping. The experimentally observed results are correlated with X-ray diffraction studies.
Resumo:
High-resolution powder neutron diffraction data collected for the skutterudites MGe1.5S1.5 (M=Co, Rh, Ir) reveal that these materials adopt an ordered skutterudite structure (space group R3¯), in which the anions are ordered in layers perpendicular to the [111] direction. In this ordered structure, the anions form two-crystallographically distinct four-membered rings, with stoichiometry Ge2S2, in which the Ge and S atoms are trans to each other. The transport properties of these materials, which are p-type semiconductors, are discussed in the light of the structural results. The effect of iron substitution in CoGe1.5S1.5 has been investigated. While doping of CoGe1.5S1.5 has a marked effect on both the electrical resistivity and the Seebeck coefficient, these ternary skutterudites exhibit significantly higher electrical resistivities than their binary counterparts.
Resumo:
Polysiloxane hybrid films were deposited on stainless steel by dip-coating using a sol prepared by hydrolytic co-polycondensation of tetraethoxysilane (TEOS) and 3-methacryloxy propyltrimethoxysilane (MPTS), followed by radical polymerization of methacrylic moieties. The TEOS/MPTS ratio was chosen equal to 2 and the Ce/Si ratio varied between 0.01 and 0.1. The effects of cerium concentration and valence (Ce(III) and Ce (IV)) on the structural features of polysiloxane films were studied by X-ray photoelectron spectroscopy (XPS) and (29)Si nuclear magnetic resonance (NMR). The corrosion protection of stainless steel by the hybrid coatings was investigated by XPS, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curves, after immersion in saline and acid solutions. The NMR results have shown for Ce(IV) doped films a high degree of polycondensation of up to 89%. Electrochemical analysis has evidenced that hybrid films with the lowest Ce concentration act as an efficient diffusion barrier by increasing the corrosion resistance and reducing the current densities up to 3 orders of magnitude compared to bare stainless steel. The analysis of structural effects induced by Ce(III) and Ce(IV) species, performed by XPS, indicates that the improved corrosion protection of Ce(IV) doped films might be mainly related to the enhanced polymerization of siloxane groups. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Optical absorption, Stokes, and anti-Stokes photoluminescence were performed on Er3+-Yb3+ co-doped fluoroindate glasses. For compounds prepared with a fixed 2 mol % ErF3 concentration and YbF3 contents ranging from 0 to 8 mol %, important upconversion processes were observed as a function of temperature and photon excitation energy. Based on the experimental data, two mechanisms for the upconversion (or anti-Stokes photoluminescence) processes were identified and analyzed in detail. At high Yb contents, the upconversion mechanisms are mostly determined by the population of the 2F5/2 levels of Yb3+ ions (or 4I11/2 levels of Er3+ ions, by energy transfer) regardless of the photon excitation energy and temperature of measurement. Moreover, green and red light emission have similar intensities when a large Yb3+ content is present. © 1998 American Institute of Physics.
Resumo:
Pós-graduação em Química - IQ
Resumo:
In this work we study the effect reduction in the density of dangling bond species D-0 states in rare-earth (RE) doped a-Si films as a function concentration for different RE-specimens. The films a-Si-1_(x) REx, RE=Y3+, Gd3+, Er3+, Lu3+) were prepared by co-sputtering and investigated by electron spin resonance (ESR) and Raman scattering experiments. According to our data the RE-doping reduces the ESR signal intensity of the D-0 states with an exponential dependence on the rare-concentration. Furthermore, the reduction produced by the magnetic rare-earths Gd3+ and Er3+ is remarkably greater than that caused by Y3+ and Lu3+, which led us to suggest an exchange-like coupling between the spin of the magnetic REs3+ and the spin of silicon neutral dangling bonds. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
ZnO and doped M:ZnO (M = V, Fe and Co) nanostructures were synthesized by microwave hydrothermal synthesis using a low temperature route without addition of any surfactant. The transition metal ions were successfully doped in small amount (3% mol) into ZnO structure. Analysis by X-ray diffraction reveals the formation of ZnO with the hexagonal (wurtzite-type) crystal structure for all the samples. The as-obtained samples showed a similar flower-like morphology except for Fe:ZnO samples, which presented a plate-like morphology. The photocatalytic performance for Rhodamine B (RhB) degradation confirmed that the photoactivity of M:ZnO nanostructures decreased for all dopants in structure, according to their eletronegativity. Photoluminescence spectroscopy was employed to correlate M:ZnO structure with its photocatalytical properties. It was suggested that transition metal ions in ZnO lattice introduce defects that act as trapping or recombination centers for photogenerated electrons and holes, making it impossible for them reach the surface and promote the photocatalytical process.
Resumo:
The down-conversion process in Tb3+-Yb3+ co-doped Calibo glasses was studied. The emission, excitation and time-resolved measurements indicated the existence of an energy conversion through the excitation of Tb3+ ions to near-infrared emission by Yb3+ ions. The emission intensity dependence on excitation power confirms that the one-photon process is responsible for the Yb3+ emission. An enhanced Yb3+ emission was observed with Yb3+ doping and an optimal energy transfer efficiency of 32% was obtained before reaching near-infrared emission quenching. The mechanism of the non-resonant energy transfer from Tb3+ to Yb3+ is discussed in terms of the Tb3+-Yb3+ cross-relaxation and multiphonon decay processes. (C) 2012 Elsevier B.V. All rights reserved.