532 resultados para Esterase


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The genus Macrobrachium (Bate, 1868) belongs to the Palaemonidae family. These species are commonly found in lakes, floodplains and rivers in tropical and subtropical regions of South America. The Macrobrachium genus encompasses nearly 210 species of ecological and economic importance. In this study, three species of Macrobrachium (M acrobrachium jelskii, M acrobrachium amazonicum and M acrobrachium brasiliense) were studied in order to characterize the esterase patterns in the hepatopancreas, which were still unknown. Esterases are enzymes which catalyze the hydrolysis of esters. In the hepatopancreas, these enzymes play important roles in several metabolic processes involved in some functions of this organ, such as detoxification and digestion. Twelve esterase bands (EST1 to EST12) were detected in these species, and a comparison among them showed no qualitative differences in interspecific bands, or between males and females. Inhibitors were used to classify the esterase bands. The results indicated seven acetylesterases, two carboxylesterases, one arylesterase, and one cholinesterase. The EST11 band was not detected in these procedures because of its lower frequency. Statistical analyses showed no variability among the species, in either interspecific or intraspecific assays. These results support the hypothesis of a high evolutionary conservation of esterases in the hepatopancreas of these crustaceans. The data enabled us to assess the genetic structure of these species through the use of esterasic enzymes. It also contributes to our knowledge about the biology of these poorly studied species. Knowledge on the genetic structure of populations and species are essential when defining priorities for their management and conservation. © 2012 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural polysaccharides contained in plant cell walls have been pointed to as a promising renewable alternative to petroleum and natural gas. Ferulic acid is a ubiquitous component of plant polysaccharides, which is found in either monomeric or dimeric forms and is covalently linked to arabinosyl residues. Ferulic acid has several commercial applications in food and pharmaceutical industries. The study herein introduces a novel feruloyl esterase from Aspergillus clavatus (AcFAE). Along with a comprehensive functional and biophysical characterization, the low-resolution structure of this enzyme was also determined by small-angle X-ray scattering. In addition, we described the production of phenolic compounds with antioxidant capacity from wheat arabinoxylan and sugarcane bagasse using AcFAE. The ability to specifically cleave ester linkages in hemicellulose is useful in several biotechnological applications, including improved accessibility to lignocellulosic enzymes for biofuel production. © 2012 Springer-Verlag Berlin Heidelberg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to determine the effect of applying fibrolytic enzymes at ensiling, either alone or in combination with a ferulic acid esterase-producing bacterial silage inoculant, on the silage conservation characteristics and nutritive value of alfalfa (Medicago sativa L). Second-cut alfalfa (340 g DM/kg fresh crop) was harvested, wilted, chopped and sub-sampled into 24 batches. Samples were randomly allocated in triplicate to one of four enzyme product treatments supplying endoglucanases and xylanases: none (control), EN1, EN2, EN3; applied alone or in combination with a ferulic acid esterase-producing silage inoculant (FAEI). Treatments were arranged in a 4 x 2 factorial design. All enzyme treatments were applied at 2 ml enzyme product/kg herbage DM, and inoculant was applied at 1 x 10(5) cfu/g fresh herbage. Samples were packed into laboratory-scale silos and stored for 7, 27 or 70 days, and analysed for dry matter (DM) losses, aerobic stability, chemical composition and in vitro ruminal degradability. The use of enzymes did not affect (P>0.05) ensilage DM losses or lactic or acetic acid concentrations after 70 days of ensilage, compared to the control silage. Silage produced using EN1 had lesser neutral detergent fibre (aNDF, P=0.046) and acid detergent fibre (ADF; P=0.006) concentrations than control silage. However, no difference (P>0.05) was observed between the control silage and silage produced with EN1 for aNDF or ADF degradability (NDFD, ADFD). Silages produced with FAEI had greater DM losses (P=0.017) and pH (P<0.001) and lesser NDFD (P=0.019), ADFD (P=0.010) and proportion of lactic acid in the total fermentation products (P=0.006) after 70 days of ensilage, compared to uninoculated silages. The use of fibrolytic enzymes did not have a major effect on the ensilage fermentation of alfalfa, either ensiled alone or with an inoculant. No advantage in ruminal DM or fibre degradability was observed for silages produced with fibrolytic enzymes. The use of a ferulic acid esterase-producing inoculant alone did not improve the nutritive value of alfalfa silage, and did not promote any incremental effects when applied in combination with fibrolytic enzyme products. Crown Copyright (C) 2014 Published by Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Immobilization of biologically important molecules on myriad nano-sized materials has attracted great attention. Through this study, thermophilic esterase enzyme was obtained using recombinant DNA technology and purified applying one-step His-Select HF nickel affinity gel. The synthesis of chitosan was achieved from chitin by deacetylation process and degree of deacetylation was calculated as 89% by elemental analysis. Chitosan nanoparticles were prepared based on the ionic gelation of chitosan with tripolyphosphate anions. The physicochemical properties of the chitosan and chitosan nanoparticles were determined by several methods including SEM (Scanning Electron Microscopy), FT-IR (Fourier Transform Infrared Spectroscopy) and DLS (Dynamic Light Scattering). The morphology of chitosan nanoparticles was spherical and the nanospheres’ average diameter was 75.3 nm. The purified recombinant esterase was immobilized efficiently by physical adsorption onto chitosan nanoparticles and effects of various immobilization conditions were investigated in details to develope highly cost-effective esterase as a biocatalyst to be utilized in biotechnological purposes. The optimal conditions of immobilization were determined as follows; 1.0 mg/mL of recombinant esterase was immobilized on 1.5 mg chitosan nanoparticles for 30 min at 60°C, pH 7.0 under 100 rpm stirring speed. Under optimized conditions, immobilized recombinant esterase activity yield was 88.5%. The physicochemical characterization of enzyme immobilized chitosan nanoparticles was analyzed by SEM, FT-IR and AFM (Atomic Force Microscopy).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Activation of the complement system and polymorphonuclear neutrophilic leukocytes plays a major role in mediating reperfusion injury after lung transplantation. We hypothesized that early interference with complement activation would reduce lung reperfusion injury after transplantation. METHODS: Unilateral left lung autotransplantation was performed in 6 sheep. After hilar stripping the left lung was flushed with Euro-Collins solution and preserved for 2 hours in situ at 15 degrees C. After reperfusion the right main bronchus and pulmonary artery were occluded, leaving the animal dependent on the reperfused lung (reperfused group). C1-esterase inhibitor group animals (n = 6) received 200 U/kg body weight of C1-esterase inhibitor as a short infusion, half 10 minutes before, the other half 10 minutes after reperfusion. Controls (n = 6) underwent hilar preparation only. Pulmonary function was assessed by alveolar-arterial oxygen difference and pulmonary vascular resistance. The release of beta-N-acetylglucosaminidase served as indicator of polymorphonuclear neutrophilic leukocyte activation. Extravascular lung water was an indicator for pulmonary edema formation. Biopsy specimens were taken from all groups 3 hours after reperfusion for light and electron microscopy. RESULTS: In the reperfused group, alveolar-arterial oxygen difference and pulmonary vascular resistance were significantly elevated after reperfusion. All animals developed frank alveolar edema. The biochemical marker beta-N-acetylglucosaminidase showed significant leukocyte activation. In the C1-esterase inhibitor group, alveolar-arterial oxygen difference, pulmonary vascular resistance, and the level of polymorphonuclear neutrophilic leukocyte activation were significantly lower. CONCLUSIONS: Treatment with C1-esterase inhibitor reduces reperfusion injury and improves pulmonary function in this experimental model.