956 resultados para Essences and essential oils.
Resumo:
Selostus: Monoterpeenit kasvinsuojelussa: erityisesti limoneenin vaikutus eri eliöryhmiin
Resumo:
The objective of this work was to evaluate the effects of plant essential oils (EOs) on the growth of Xanthomonas vesicatoria, on bacterial morphology and ultrastructure, and on the severity of tomato bacterial spot. EOs from citronella, clove, cinnamon, lemongrass, eucalyptus, thyme, and tea tree were evaluated in vitro at concentrations of 0.1, 1.0, 10, and 100% in 1.0% powdered milk. The effect of EOs, at 0.1%, on the severity of tomato bacterial spot was evaluated in tomato seedlings under greenhouse conditions. The effects of citronella, lemongrass, clove, and tea tree EOs, at 0.1%, on X. vesicatoria cells were evaluated by transmission electron microscopy. All EOs showed direct toxic effect on the bacteria at a 10%-concentration in vitro. Under greenhouse conditions, the EOs of clove, citronella, tea tree, and lemongrass reduced disease severity. EOs of clove and tea tree, and streptomycin sulfate promoted loss of electron-dense material and alterations in the cytoplasm, whereas EO of tea tree promoted cytoplasm vacuolation, and those of citronella, lemongrass, clove, and tea tree caused damage to the bacterial cell wall. The EOs at a concentration of 0.1% reduce the severity of the disease.
Resumo:
The objective of this study was to characterize the chemical composition of the essential oil from the leaves of Annona emarginata (Schltdl.) H. Rainer 'terra-fria' and Annona squamosa L. The species were grown in a greenhouse for 18 months, which nutrient solution was applied weekly; the plants were then harvested and the leaves dried to extract the essential oil. The essential oil was analyzed by gas chromatography and mass spectrometry to study its chemical profiles. Eleven substances were found in the essential oil of A. emarginata, primarily (E)-caryophyllene (29.29%), (Z)-caryophyllene (16.86%), γ-muurolene (7.54%), α-pinene (13.86%), and tricyclene (10.04%). Ten substances were detected in the oil from A. squamosa, primarily (E)-caryophyllene (28.71%), (Z)-caryophyllene (14.46%), α-humulene (4.41%), camphene (18.10%), α-pinene (7.37%), β-pinene (8.71%), and longifolene (5.64%). Six substances were common to both species: (E)-caryophyllene, (Z)-caryophyllene, α-humulene, camphene, α-pinene, and β-pinene.
Resumo:
The composition of essential oils from leaves, stems and fruits of Piper aduncum, P. arboreum and P. tuberculatum was examined by means of GC-MS and antifungal assay. There was a predominance of monoterpenes in P. aduncum and P. tuberculatum and of sesquiterpenes in P. arboreum. P. aduncum showed the richest essential oil composition, including linalool. The essential oils from fruits of P. aduncum and P. tuberculatum showed the highest antifungal activity with the MIC of 10 µg as determined against Cladosporium cladosporioides and C. sphaerospermum, respectively. This is the first report of the composition of essential oils from P. tuberculatum.
Resumo:
The aromatic flora of the Amazon has been inventoried for 30 years. In this sense, were made over 500 field trips to collect over 2500 plants and to obtain more than 2000 essential oils and aroma concentrates, all of them submitted to GC and GC-MS. This work led to the creation of a database for the aromatic plants of the Amazon, which catalogs general information about 1250 specimens. The database has allowed the publication of the chemical composition of the oils and aromas of more than 350 species, associated with a larger number of chemical types. The essential oils of many species offer optimum conditions for economic exploitation and use in national and international market of fragrances, cosmetics, agricultural and household pesticides.
Resumo:
The essential oils of seven Myrtaceae species were investigated for its chemical composition and antibacterial activity. The volatile oils were characterized by a high content of monoterpenoids of which 1,8-cineole (88.0, 65.0 and 77.0% for Melaleuca hypericifolia, Callistemon viminalis and Callistemon citrinus respectively), terpinen-4-ol (47.0 and 49.8% for Melaleuca thymifolia and Callistemon polandii respectively) and α-pinene (54.5% for Kunzea ericoides) were the major components. The oil from M. linariifolia was characterized by a high concentration of methyleugenol (87.2%). The oil from Melaleuca thymifolia was the most active, exhibiting high antimicrobial activity against all tested bacteria.
Resumo:
Genetic algorithm and partial least square (GA-PLS) and kernel PLS (GA-KPLS) techniques were used to investigate the correlation between retention indices (RI) and descriptors for 117 diverse compounds in essential oils from 5 Pimpinella species gathered from central Turkey which were obtained by gas chromatography and gas chromatography-mass spectrometry. The square correlation coefficient leave-group-out cross validation (LGO-CV) (Q²) between experimental and predicted RI for training set by GA-PLS and GA-KPLS was 0.940 and 0.963, respectively. This indicates that GA-KPLS can be used as an alternative modeling tool for quantitative structure-retention relationship (QSRR) studies.
Resumo:
Volatile oils from the leaves of Verbenaceae species Aloysia virgata, Lantana camara, Lantana trifolia, Lantana montevidensis, Lippia brasiliensis and Lippia sericea were investigated for its chemical composition and antibacterial activity. The volatile oils were characterized by a high content of sesquiterpenes of which (E)-caryophyllene (10-35%), germacrene-D (5-46%) and bicyclogermacrene (7-17%) were the major components for all studied species. For the flowers, a higher concentration of monoterpenes was observed for the species L. camara, L. trifolia and L. brasiliensis. These compounds probably act as attractive to specific pollinators. The volatile oils from A. virgata was the most active, exhibiting moderate antimicrobial activity against the bacteria Staphylococcus aureus, Bacillus cereus and Escherichia coli.
Resumo:
The essential oils from leaves, stems and fruits of Piper divaricatum were analyzed by GC-MS. The tissues showed high safrole content: leaves (98%), fruits (87%) and stems (83%), with yields of 2.0, 4.8 and 1.7%, respectively. This is a new alternative source of safrole, a compound widely used as a flavoring agent and insecticide. The leaf's oil showed antibacterial activity against gram-negative bacteria while safrole was active against Salmonella Typhimurium and Pseudomonas aeruginosa. In addition, the study of circadian rhythm of the safrole concentration in the essential oils of leaves showed a negligible variation of 92 to 98%.
Resumo:
Essential oils of Lippia sidoides, Lippia gracilis and their main chemical components were investigated for in vitro control of Thielaviopsis paradoxa. Mycelial growth and a number of pathogen conidia were inhibited by the essential oil of L. sidoides at all concentrations tested (0.2; 0.5; 1.0; 3.0 µL mL-1). L. sidoides oil contained 42.33% thymol and 4.56% carvacrol, while L. gracilis oil contained 10% thymol and 41.7% carvacrol. Mycelial growth and conidial production of T. paradoxa were completely inhibited by thymol at a 0.3 µL m-1 concentration. The results suggest that thymol could potentially be used for controlling coconut stem bleeding.
Resumo:
The leaf essential oils of Eugenia lutescens Cambess andEugenia langsdorffii O. Berg, collected in the rainy (RS) and dry seasons (DS), were extracted by hydrodistillation and then characterized by a gas chromatography-flame ionization detector and a gas chromatography-mass spectrometer. The potential acaricidal activity and oviposition deterrence of these oils were evaluated against Tetranychus urticae . The oil yields were higher in the RS for E. lutescens, while those forE. langsdorffii were higher in the DS. α-Pinene and β-pinene were determined to be the major constituents of the oils fromE. lutescens, while bicyclogermacrene, spathulenol, and β-caryophyllene predominated in E. langsdorffii . Seasonal variations in the oils were primarily related to chemical diversity, and E. lutescens was more affected than was E. langsdorffii . The E. langsdorffii oil collected in the DS was most toxic to the spider mite, while the oils of E. lutescens and E. langsdorffii collected in the RS drastically reduced its egg quantities. This study successfully determined the periods of greater oil production and acaricidal activity.
Resumo:
This study evaluated the sedative and anesthetic effects of the essential oils (EO) of Hyptis mutabilis (Rich.) Briq. and their isolated components on silver catfish (Rhamdia quelen). Quantitative chemical differences between the EOs obtained from leaves and inflorescences were verified, and a new chemotype rich in globulol was described. Although there were no significant differences in the time of induction for sedation and anesthesia between the EOs, only the leaf EO at 344 mg/L anesthetized all fish without side effects. Fractionation of the leaf EO was carried out by column chromatography. The isolated compounds [(+)-1-terpinen-4-ol and (-)-globulol] showed different activity from that detected for the leaf EO in proportional concentrations and similar sedation to a eugenol control at 10 mg/L. However, fish exposed to 1-terpinen-4-ol (3 and 10 mg/L) did not remain sedated for 30 min. Anesthesia was obtained with 83-190 mg/L globulol, but animals showed loss of mucus during induction and mortality at these concentrations. Synergism of the depressor effects was detected with the association of globulol and benzodiazepine (BDZ), compared with either drug alone. Fish exposed to BDZ or globulol+BDZ association showed faster recovery from anesthesia in water containing flumazenil, but the same did not occur with globulol. In conclusion, the use of globulol in aquaculture procedures should be considered only at sedative concentrations of 10 and 20 mg/L, and its mechanism of action seems not to involve the GABAA-BDZ system.
Resumo:
In this work, the essential oils of S. officinalis, S. sclarea, S. lavandulifolia and S. triloba were chemically analyzed by gas chromatography coupled to a mass spectrometry detector (GC/MSD), and their antimicrobial activity was tested against 10 microorganisms using the disk diffusion method and the Minimum Inhibitory Concentration (MIC) technique. The following major compounds were identified in the essential oils: α - and β-thujone, camphor and 1,8-cineole, except in S. sclarea, where linalool, linalyl acetate and α-terpineol were the major constituents. The antimicrobial activity showed significant differences (p < 0.05) only when obtained by the MIC method. Gram-positive microorganisms presented larger sensitivity for the essential oils. The lowest MIC was observed when Staphylococcus aureus was exposed to 2.31 mg.mL-1 of S. lavandulifolia essential oil, while the highest MIC value was obtained when Shigella flexneri was exposed to 9.25 mg.mL-1 of the same essential oil, thus demonstrating that this essential oil may be effective as a bacteriostatic agent against Gram-positive microorganisms.
Resumo:
Several essential oils of condiment and medicinal plants possess proven antimicrobial activity and are of important interest for the food industry. Therefore, the Minimum Inhibitory Concentrations (MIC) of those oils should be determined for various bacteria. MIC varies according to the oil used, the major compounds, and the physiology of the bacterium under study. In the present study, the essential oils of the plants Thymus vulgaris (time), Cymbopogon citratus (lemongrass) and Laurus nobilis (bay) were chemically quantified, and the MIC was determined on the bacteria Staphylococcus aureus ATCC 25923, Escherichia coli ATCC 25922, Listeria monocytogenes ATCC 19117, Salmonella enterica Enteritidis S64, and Pseudomonas aeruginosa ATCC 27853. The essential oil of C. citratus demonstrated bacterial activity at all concentrations tested and against all of the bacteria tested. The majority of essential oil compounds were geranial and neral. The major constituent of T. vulgaris was 1.8-cineol and of L. nobilis was linalool, which presented lower antibacterial activity, followed by 1.8-cineol. The Gram-negative bacteria demonstrated higher resistance to the use of the essential oils tested in this study. E. coli was the least sensitive and was inhibited only by the oils of C. citratus and L. nobilis.
Resumo:
Abstract Essential oils (EO) of eucalyptus (Eucalyptus globulus L.), thymus (Thymus capitatus L.) pirul (Schinus molle L.) were evaluated for their efficacy to control Aspergillus parasiticus and Fusarium moniliforme growth and their ability to produce mycotoxins. Data from kinetics radial growth was used to obtain the half maximal inhibitory concentration (IC50). The IC50 was used to evaluate spore germination kinetic and mycotoxin production. Also, spore viability was evaluated by the MTT assay. All EO had an effect on the radial growth of both species. After 96 h of incubation, thymus EO at concentrations of 1000 and 2500 µL L–1 totally inhibited the growth of F. moniliforme and A. parasiticus, respectively. Eucalyptus and thymus EO significantly reduced spore germination of A. parasiticus. Inhibition of spore germination of F. moniliforme was 84.6, 34.0, and 30.6% when exposed to eucalyptus, pirul, and thymus EO, respectively. Thymus and eucalyptus EO reduced aflatoxin (4%) and fumonisin (31%) production, respectively. Spore viability was affected when oils concentration increased, being the thymus EO the one that reduced proliferation of both fungi. Our findings suggest that EO affect F. moniliforme and A. parasiticus development and mycotoxin production.