997 resultados para Error diffusion


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Chlorides induce local corrosion in the steel reinforcements when reaching the bar surface. The measurement of the rate of ingress of these ions, is made by mathematically fitting the so called “error function equation” into the chloride concentration profile, obtaining so the diffusion coefficient and the chloride concentration at the concrete surface. However, the chloride profiles do not always follow Fick’s law by having the maximum concentration at the concrete surface, but often the profile shows a maximum concentration more in the interior, which indicates a different composition and performance of the most external concrete layer with respect to the internal zones. The paper presents a procedure prepared during the time of the RILEM TC 178-TMC: “Testing and modeling chloride penetration in concrete”, which suggests neglecting the external layer where the chloride concentration increases and using the maximum as an “apparent” surface concentration, called C max and to fit the error function equation into the decreasing concentration profile towards the interior. The prediction of evolution should be made also from the maximum.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the objective to improve the reactor physics calculation on a 2D and 3D nuclear reactor via the Diffusion Equation, an adaptive automatic finite element remeshing method, based on the elementary area (2D) or volume (3D) constraints, has been developed. The adaptive remeshing technique, guided by a posteriori error estimator, makes use of two external mesh generator programs: Triangle and TetGen. The use of these free external finite element mesh generators and an adaptive remeshing technique based on the current field continuity show that they are powerful tools to improve the neutron flux distribution calculation and by consequence the power solution of the reactor core even though they have a minor influence on the critical coefficient of the calculated reactor core examples. Two numerical examples are presented: the 2D IAEA reactor core numerical benchmark and the 3D model of the Argonauta research reactor, built in Brasil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we consider the a posteriori and a priori error analysis of discontinuous Galerkin interior penalty methods for second-order partial differential equations with nonnegative characteristic form on anisotropically refined computational meshes. In particular, we discuss the question of error estimation for linear target functionals, such as the outflow flux and the local average of the solution. Based on our a posteriori error bound we design and implement the corresponding adaptive algorithm to ensure reliable and efficient control of the error in the prescribed functional to within a given tolerance. This involves exploiting both local isotropic and anisotropic mesh refinement. The theoretical results are illustrated by a series of numerical experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a pre-processing mesh re-distribution algorithm based upon harmonic maps employed in conjunction with discontinuous Galerkin approximations of advection-diffusion-reaction problems. Extensive two-dimensional numerical experiments with different choices of monitor functions, including monitor functions derived from goal-oriented a posteriori error indicators are presented. The examples presented clearly demonstrate the capabilities and the benefits of combining our pre-processing mesh movement algorithm with both uniform, as well as, adaptive isotropic and anisotropic mesh refinement.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose an adaptive mesh refinement strategy based on exploiting a combination of a pre-processing mesh re-distribution algorithm employing a harmonic mapping technique, and standard (isotropic) mesh subdivision for discontinuous Galerkin approximations of advection-diffusion problems. Numerical experiments indicate that the resulting adaptive strategy can efficiently reduce the computed discretization error by clustering the nodes in the computational mesh where the analytical solution undergoes rapid variation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diffusion equations that use time fractional derivatives are attractive because they describe a wealth of problems involving non-Markovian Random walks. The time fractional diffusion equation (TFDE) is obtained from the standard diffusion equation by replacing the first-order time derivative with a fractional derivative of order α ∈ (0, 1). Developing numerical methods for solving fractional partial differential equations is a new research field and the theoretical analysis of the numerical methods associated with them is not fully developed. In this paper an explicit conservative difference approximation (ECDA) for TFDE is proposed. We give a detailed analysis for this ECDA and generate discrete models of random walk suitable for simulating random variables whose spatial probability density evolves in time according to this fractional diffusion equation. The stability and convergence of the ECDA for TFDE in a bounded domain are discussed. Finally, some numerical examples are presented to show the application of the present technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we consider a time fractional diffusion equation on a finite domain. The equation is obtained from the standard diffusion equation by replacing the first-order time derivative by a fractional derivative (of order $0<\alpha<1$ ). We propose a computationally effective implicit difference approximation to solve the time fractional diffusion equation. Stability and convergence of the method are discussed. We prove that the implicit difference approximation (IDA) is unconditionally stable, and the IDA is convergent with $O(\tau+h^2)$, where $\tau$ and $h$ are time and space steps, respectively. Some numerical examples are presented to show the application of the present technique.