997 resultados para Equipment testing
Resumo:
Roughly 242 million used tires are generated annually in the United States. Many of these tires end up being landfilled or stockpiled. The stockpiles are unsightly, unsanitary, and also collect water which creates the perfect breeding ground for mosquitoes, some of which carry disease. In an effort to reduce the number of used tire stockpiles the federal government mandated the use of recycled rubber in federally funded, state implemented department of transportation (DOT) projects. This mandate required the use of recycled rubber in 5% of the asphalt cement concrete (ACC) tonnage used in federally funded projects in 1994, increasing that amount by 5% each year until 20% was reached, and remaining at 20% thereafter. The mandate was removed as part of the appropriations process in 1994, after the projects in this research had been completed. This report covers five separate projects that were constructed by the Iowa Department Of Transportation (DOT) in 1991 and 1992. These projects had all had some form of rubber incorporated into their construction and were evaluated for 5 years. The conclusion of the study is that the pavements with tire rubber added performed essentially the same as conventional ACC pavement. An exception was the use of rubber chips in a surface lift. This performed better at crack control and worse with friction values than conventional ACC. The cost of the pavement with rubber additive was significantly higher. As a result, the benefits do not outweigh the costs of using this recycled rubber process in pavements in Iowa.
Resumo:
Pavements are subjected to different stresses during their design lives. A properly designed pavement will perform adequately during its design life, and the distresses will not exceed the allowable limits; however, there are several factors that can lead to premature pavement failure. One such factor is moisture sensitivity. AASHTO T 283 is the standard test used in the moisture susceptibility evaluation of asphalt mixtures, but the results of the test are not very representative of the expected behavior of asphalt mixtures. The dynamic modulus test measures a fundamental property of the mixture. The results of the dynamic modulus test can be used directly in the Mechanistic-Empirical Pavement Design Guide (MEPDG) and are considered a very good representation of the expected field performance of the mixture. Further research is still needed to study how the dynamic modulus results are affected by moisture. The flow number test was studied in previous research as a candidate test for moisture-susceptibility evaluation, but the results of that research were not favorable. This research has four main objectives. The first objective of this research is to evaluate the usefulness of the dynamic modulus and flow number tests in moisture-susceptibility evaluation. The second objective is to compare the results to those achieved using the AASHTO T 283 test. The third objective is to study the effect of different methods of sample conditioning and testing conditions. The fourth objective of the research is to study the variability in the test results.
Resumo:
Among the variety of road users and vehicle types that travel on U.S. public roadways, slow moving vehicles (SMVs) present unique safety and operations issues. SMVs include vehicles that do not maintain a constant speed of 25 mph, such as large farm equipment, construction vehicles, or horse-drawn buggies. Though the number of crashes involving SMVs is relatively small, SMV crashes tend to be severe. Additionally, SMVs can be encountered regularly on non-Interstate/non-expressway public roadways, but motorists may not be accustomed to these vehicles. This project was designed to improve transportation safety for SMVs on Iowa’s public roadway system. This report includes a literature review that shows various SMV statistics and laws across the United States, a crash study based on three years of Iowa SMV crash data, and recommendations from the SMV community.
Resumo:
The key goals in winter maintenance operations are preserving the safety and mobility of the traveling public. To do this, it is in general necessary to try to increase the friction of the road surface above the typical friction levels found on a snow or ice covered roadway. Because of prior work on the performance of abrasives (discussed in greater detail in chapter 2) a key concern when using abrasives has become how to ensure the greatest increase in pavement friction when using abrasives for the longest period of time. There are a number of ways in which the usage of abrasives can be optimized, and these methods are discussed and compared in this report. In addition, results of an Iowa DOT test of zero-velocity spreaders are presented. Additionally in this study the results of field studies conducted in Johnson County Iowa on the road surface friction of pavements treated with abrasive applications using different modes of delivery are presented. The experiments were not able to determine any significant difference in material placement performance between a standard delivery system and a chute based delivery system. The report makes a number of recommendations based upon the reviews and the experiments.
Resumo:
The effects of farm equipment on the structural behavior of flexible and rigid pavements were investigated in this study. The project quantified the difference in pavement behavior caused by heavy farm equipment as compared to a typical 5-axle, 80 kip semi-truck. This research was conducted on full scale pavement test sections designed and constructed at the Minnesota Road Research facility (MnROAD). The testing was conducted in the spring and fall seasons to capture responses when the pavement is at its weakest state and when agricultural vehicles operate at a higher frequency, respectively. The flexible pavement sections were heavily instrumented with strain gauges and earth pressure cells to measure essential pavement responses under heavy agricultural vehicles, whereas the rigid pavement sections were instrumented with strain gauges and linear variable differential transducers (LVDTs). The full scale testing data collected in this study were used to validate and calibrate analytical models used to predict relative damage to pavements. The developed procedure uses various inputs (including axle weight, tire footprint, pavement structure, material characteristics, and climatic information) to determine the critical pavement responses (strains and deflections). An analysis was performed to determine the damage caused by various types of vehicles to the roadway when there is a need to move large amounts agricultural product.
Resumo:
In the Russian Wholesale Market, electricity and capacity are traded separately. Capacity is a special good, the sale of which obliges suppliers to keep their generating equipment ready to produce the quantity of electricity indicated by the System Operator. The purpose of the formation of capacity trading was the maintenance of reliable and uninterrupted delivery of electricity in the wholesale market. The price of capacity reflects constant investments in construction, modernization and maintenance of power plants. So, the capacity sale creates favorable conditions to attract investments in the energy sector because it guarantees the investor that his investments will be returned.
Resumo:
The simulation and development work that has been undertaken to produce a signal equaliser used to improve the data rates from oil well logging instruments is presented. The instruments are lowered into the drill bore hole suspended by a cable which has poor electrical characteristics. The equaliser described in the paper corrects for the distortions that occur from the cable (dispersion and attenuation) with the result that the instrument can send data at 100 K.bits/second down its own suspension cable of 12 Km in length. The use of simulation techniques and tools were invaluable in generating a model for the distortions and proved to be a useful tool when site testing was not available.
Resumo:
A test and demonstration facility for PV and PV hybrid systems and system components has been designed and installed at Dalarna University in Sweden. The facility allows studies of complete PV systems or single components in a range of 0.1-10 kW. The facility includes two grid-connected PV systems, a PV Hybrid off-grid system, three emulators and the necessary measurement and control equipment. Tests can be done manually or automatically through programmed test procedures controlled that will be implemented in Labview. The facility shall be used by researchers, professionals of the industry and engineering students.
Resumo:
Dynamic system test methods for heating systems were developed and applied by the institutes SERC and SP from Sweden, INES from France and SPF from Switzerland already before the MacSheep project started. These test methods followed the same principle: a complete heating system – including heat generators, storage, control etc., is installed on the test rig; the test rig software and hardware simulates and emulates the heat load for space heating and domestic hot water of a single family house, while the unit under test has to act autonomously to cover the heat demand during a representative test cycle. Within the work package 2 of the MacSheep project these similar – but different – test methods were harmonized and improved. The work undertaken includes: • Harmonization of the physical boundaries of the unit under test. • Harmonization of the boundary conditions of climate and load. • Definition of an approach to reach identical space heat load in combination with an autonomous control of the space heat distribution by the unit under test. • Derivation and validation of new six day and a twelve day test profiles for direct extrapolation of test results. The new harmonized test method combines the advantages of the different methods that existed before the MacSheep project. The new method is a benchmark test, which means that the load for space heating and domestic hot water preparation will be identical for all tested systems, and that the result is representative for the performance of the system over a whole year. Thus, no modelling and simulation of the tested system is needed in order to obtain the benchmark results for a yearly cycle. The method is thus also applicable to products for which simulation models are not available yet. Some of the advantages of the new whole system test method and performance rating compared to the testing and energy rating of single components are: • Interaction between the different components of a heating system, e.g. storage, solar collector circuit, heat pump, control, etc. are included and evaluated in this test. • Dynamic effects are included and influence the result just as they influence the annual performance in the field. • Heat losses are influencing the results in a more realistic way, since they are evaluated under "real installed" and representative part-load conditions rather than under single component steady state conditions. The described method is also suited for the development process of new systems, where it replaces time-consuming and costly field testing with the advantage of a higher accuracy of the measured data (compared to the typically used measurement equipment in field tests) and identical, thus comparable boundary conditions. Thus, the method can be used for system optimization in the test bench under realistic operative conditions, i.e. under relevant operating environment in the lab. This report describes the physical boundaries of the tested systems, as well as the test procedures and the requirements for both the unit under test and the test facility. The new six day and twelve day test profiles are also described as are the validation results.
Resumo:
A pressure analgesiometric device was developed for unrestrained cats. Eleven cats were studied. Stimulation was via three rounded pins within a bracelet on the forearm. The pins were advanced by manual bladder inflation. Bladder pressure was measured using a strain gauge pressure transducer. The threshold was recorded at the behavioural end point. Thresholds were measured at 5 and 15 min intervals for 2-4 h, after removal/replacement of the cuff, for 120 min after SC butorphanol (0.4 mg/kg), and with mild skin inflammation at the testing site. Data were analysed using ANOVA. Pressure thresholds in untreated cats were around 150 mmHg. The minimum interval for testing was established as 15 min. Data were reproducible over 4 h and beyond 24 h. Thresholds in 5 cats increased (P < 0.05) above baseline for 45 min after butorphanol with a maximum increase of 270 +/- 182 mmHg at 10 min. Thresholds decreased with inflammation. The method appears suitable for feline analgesia investigations. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The growing use of sensitive loads in the electric power system, especially in industrial applications, increases voltage sags related production losses considerably, stimulating a demand for power electronics' based solutions to mitigate the effects of such problems. This paper shows the implementation and some industrial certification tests of a power equipment prototype designed to correct sags and swells, a dynamic voltage restorer, which is one of the many possible solutions for voltage sags and swells problems Experimental results of a 75kVA prototype are shown both in laboratory and full load conditions, in a certification institution (IEE-USP). © 2011 IEEE.
Resumo:
Butterfat is usually the most expensive ingredient of ice cream; hence, great care is necessary in controllng its use. The manufacturer of ice cream, whether doing a large or a small volume of business, must manufacture a product that will comply with the established fat standard. Some means of determining the percentage of butterfat in the product must be available in order to establish this control. This 1930 research bulletin discusses the different testing equipment used to test butterfat in ice cream.
Resumo:
The thesis is divided in three chapters, each one covering one topic. Initially, the thermo-mechanical and impact properties of materials used for back protectors have been analysed. Dynamical mechanical analysis (DMTA) has shown that materials used for soft-shell protectors present frequency-sensitive properties. Furthermore, through impact tests, the shock absorbing characteristics of the materials have been investigated proving the differences between soft and hard-shell protectors; moreover it has been demonstrated that the materials used for soft-shell protectors maintain their protective properties after multi-impacts. The second chapter covers the effect of the visco-elastic properties of the thermoplastic polymers on the flexural and rebound behaviours of ski boots. DMTA analysis on the materials and flexural and rebound testing on the boots have been performed. A comparison of the results highlighted a correlation between the visco-elastic properties and the flexural and rebound behaviour of ski boots. The same experimental methods have been used to investigate the influence of the design on the flexural and rebound behaviours. Finally in the third chapter the thermoplastic materials employed for the construction of ski boots soles have been characterized in terms of chemical composition, hardness, crystallinity, surface roughness and coefficient of friction (COF). The results showed a relation between material hardness and grip, in particular softer materials provide more grip with respect to harder materials. On the contrary, the surface roughness has a negative effect on friction because of the decrease in contact area. The measure of grip on inclined wet surfaces showed again a relation between hardness and grip. The performance ranking of the different materials has been the same for the COF and for the slip angle tests, indicating that COF can be used as a parameter for the choice of the optimal material to be used for the soles of ski boots.
Resumo:
Point-of-care testing (POCT) remains under scrutiny by healthcare professionals because of its ill-tried, young history. POCT methods are being developed by a few major equipment companies based on rapid progress in informatics and nanotechnology. Issues as POCT quality control, comparability with standard laboratory procedures, standardisation, traceability and round robin testing are being left to hospitals. As a result, the clinical and operational benefits of POCT were first evident for patients on the operating table. For the management of cardiovascular surgery patients, POCT technology is an indispensable aid. Improvement of the technology has meant that clinical laboratory pathologists now recognise the need for POCT beyond their high-throughput areas.
Resumo:
Transformers are very important elements of any power system. Unfortunately, they are subjected to through-faults and abnormal operating conditions which can affect not only the transformer itself but also other equipment connected to the transformer. Thus, it is essential to provide sufficient protection for transformers as well as the best possible selectivity and sensitivity of the protection. Nowadays microprocessor-based relays are widely used to protect power equipment. Current differential and voltage protection strategies are used in transformer protection applications and provide fast and sensitive multi-level protection and monitoring. The elements responsible for detecting turn-to-turn and turn-to-ground faults are the negative-sequence percentage differential element and restricted earth-fault (REF) element, respectively. During severe internal faults current transformers can saturate and slow down the speed of relay operation which affects the degree of equipment damage. The scope of this work is to develop a modeling methodology to perform simulations and laboratory tests for internal faults such as turn-to-turn and turn-to-ground for two step-down power transformers with capacity ratings of 11.2 MVA and 290 MVA. The simulated current waveforms are injected to a microprocessor relay to check its sensitivity for these internal faults. Saturation of current transformers is also studied in this work. All simulations are performed with the Alternative Transients Program (ATP) utilizing the internal fault model for three-phase two-winding transformers. The tested microprocessor relay is the SEL-487E current differential and voltage protection relay. The results showed that the ATP internal fault model can be used for testing microprocessor relays for any percentage of turns involved in an internal fault. An interesting observation from the experiments was that the SEL-487E relay is more sensitive to turn-to-turn faults than advertized for the transformers studied. The sensitivity of the restricted earth-fault element was confirmed. CT saturation cases showed that low accuracy CTs can be saturated with a high percentage of turn-to-turn faults, where the CT burden will affect the extent of saturation. Recommendations for future work include more accurate simulation of internal faults, transformer energization inrush, and other scenarios involving core saturation, using the newest version of the internal fault model. The SEL-487E relay or other microprocessor relays should again be tested for performance. Also, application of a grounding bank to the delta-connected side of a transformer will increase the zone of protection and relay performance can be tested for internal ground faults on both sides of a transformer.