955 resultados para Equipment, Tubes Tracheal
Resumo:
The mineral newberyite Mg(PO3OH)•3H2O is a mineral that has been found in caves such as the Skipton Lava Tubes (SW of Ballarat, Victoria, Australia), Moorba cave, Jurien Bay, Western Australia, and in the Petrogale Cave (Madura , Eucla, Western Australia). Because these minerals contain water, the minerals lend themselves to thermal analysis. The mineral newberyite is found to decompose at 145°C with a water loss of 31.96%, a result which is very close to the theoretical value. The result shows that the mineral is not stable in caves where the temperature exceeds this value. The implication of this result rests with the removal of kidney stones, which have the same composition as newberyite. Point heating focussing on the kidney stone results in the destruction of the kidney stone.
Resumo:
Melodic alarms proposed in the IEC 60601-1-8 standard for medical electrical equipment were tested for learnability and discriminability. Thirty-three non-anaesthetist participants learned the alarms over two sessions of practice, with or without mnemonics suggested in the standard. Fewer than 30% of participants could identify the alarms with 100% accuracy at the end of practice. Confusions persisted between pairs of alarms, especially if mnemonics were used during learning (p = 0.011). Participants responded faster (p < 0.00001) and more accurately (p = 0.002) to medium priority alarms than to high priority alarms, even though they rated the high priority alarms as sounding more urgent (p < 0.00001). Participants with at least 1 year of formal musical training identified the alarms more accurately (p = 0.0002) than musically untrained participants, and found the task easier overall (p < 0.00001). More intensive studies of the IEC 60601-1-8 alarms are needed for their effectiveness to be determined.
Resumo:
Downtime (DT) caused by non-availability of equipment and equipment breakdown has non-trivial impact on the performance of construction projects. Earlier research has often addressed this fact, but it has rarely explained the causes and consequences of DT – especially in the context of developing countries. This paper presents a DT model to address this issue. Using this model, the generic factors and processes related to DT are identified, and the impact of DT is quantified. By applying the model framework to nine road projects in Nepal, the impact of DT is explored in terms of its duration and cost. The research findings highlight how various factors and processes interact with each other to create DT, and mitigate or exacerbate its impact on project performance. It is suggested that construction companies need to adopt proactive equipment management and maintenance programs to minimize the impact of DT.
Resumo:
CFRP material has been widely used to strengthen concrete structures. There is an increasing trend of using CFRP in strengthening steel structures. The bond between steel and CFRP is a key issue. Relatively less work has been done on the bond between CFRP and a curved surface which is often found in tubular structures. This paper reports a study on the bond between CFRP and steel tubes. A series of tensile tests were conducted with different bond lengths and number of layers. The types of adhesive and specimen preparation methods varied in the testing program. High modulus CFRP was used. Tests were carried out to measure the modulus and tensile strength of CFRP. Strain gages were mounted on different layers of CFRP. The stress distributions across the layers of the CFRP were established. Models were developed to estimate the maximum load for a given CFRP arrangement.
Resumo:
The present study focused on simulating a trajectory point towards the end of the first experimental heatshield of the FIRE II vehicle, at a total flight time of 1639.53s. Scale replicas were sized according to binary scaling and instrumented with thermocouples for testing in the X1 expansion tube, located at The University of Queensland. Correlation of flight to experimental data was achieved through the separation, and independent treatment of the heat modes. Preliminary investigation indicates that the absolute value of radiant surface flux is conserved between two binary scaled models, whereas convective heat transfer increases with the length scale. This difference in the scaling techniques result in the overall contribution of radiative heat transfer diminishing to less than 1% in expansion tubes from a flight value of approximately 9-17%. From empirical correlation's it has been shown that the St √Re number decreases, under special circumstances, in expansion tubes by the percentage radiation present on the flight vehicle. Results obtained in this study give a strong indication that the relative radiative heat transfer contribution in the expansion tube tests is less than that in flight, supporting the analysis that the absolute value remains constant with binary scaling.
Resumo:
This paper treats the design and analysis of an energy absorbing system. Experimental tests were conducted on a prototype, and these tests were used to validate a finite element model of the system. The model was then used to analyze the response of the system under dynamic impact loading. The response was compared with that of a similar system consisting of straight circular tubes, empty and foam-filled conical tubes. Three types of such supplementary devices were included in the energy absorbing system to examine the crush behavior and energy absorption capacity when subjected to axial and oblique impact loadings. The findings were used to develop design guidelines and recommendations for the implementation of tapered tubes in energy absorbing systems. To this end, the system was conceptual in form such that it could be adopted for a variety of applications. Nevertheless, for convenience, the approach in this study is to treat the system as a demonstrator car bumper system used to absorb impact energy during minor frontal collisions.
Resumo:
Oral endotracheal tubes (ETTs) and nasogastric tubes (NGT) are common devices used in adult intensive care and numerous options exist for safe and comfortable securement of these devices. The aim of this project was to identify the available range of ETT and NGT securement devices in Australia as a resource for clinicians seeking to explore options for tube stabilisation. This article reports part A of this project: ETT securement options. Part B will report NGT device fixation options. Securing ETTs to ensure a patent airway with minimal ETT movement, promotion of patient comfort and absence of adverse events such as ETT dislodgement, unplanned extubation and device-related injury1, are essential critical care nursing actions. The ETT requires a fixation method that is robust yet does not traumatise or injure the mucosal tissues of the mouth and soft tissue of the lips.2,3 Choice of a securement apparatus is often determined by product availability in our units or hospitals but is also driven by evidence-based practice and clinician preference. Trying to put this information together can be difficult and time-consuming for the bedside clinician...
Resumo:
This article is the second part of a two-part series examining securement options for commonly used therapeutic devices in the adult intensive care unit. Part A focused on endotracheal device securement.1 This article addresses nasogastric tube (NGT) securement options and with the aim of identifying the available range of NGT securement devices in Australia as a resource for clinicians seeking to explore options for tube stabilisation. Nasogastric feeding or gastric decompression tubes are commonly inserted via the nostril/nares. The National Pressure Ulcer Advisory Panel (NPUAP) 2011 position statement on mucosal pressure injuries, highlighted that mucosal tissues are vulnerable to pressure from devices.2 Securing of these devices sometimes leads to pressure-related injury to the internal mucosa due to difficulty visualising the mucosa and failure to reposition the nasogastric tube to relieve the pressure in a particular area.3 The nasal orifice is much smaller than the oral cavity and regular tube position changes are vital to minimise the risk of mucosal damage and ulcer development.
Resumo:
The Australian Civil Aviation Safety Authority (CASA) currently lists more than 100 separate entities or organisations which maintain a UAS Operator Certificate (UOC) [1]. Approved operations are overwhelmingly a permutation of aerial photography, surveillance, survey or spotting and predominantly, are restricted to Visual Line of Sight (VLOS) operations, below 400 feet, and not within 3 NM of an aerodrome. However, demand is increasing for a Remote Piloted Aerial System (RPAS) regulatory regime which facilitates more expansive operations, in particular unsegregated, Beyond Visual Line of Sight (BVLOS) operations. Despite this demand, there is national and international apprehension regarding the necessary levels of airworthiness and operational regulation required to maintain safety and minimise the risk associated with unsegregated operations. Fundamental to addressing these legitimate concerns will be the mechanisms that underpin safe separation and collision avoidance. Whilst a large body of research has been dedicated to investigating on-board, Sense and Avoid (SAA) technology necessary to meet this challenge, this paper focuses on the contribution of the NAS to separation assurance, and how it will support, as well as complicate RPAS integration. The paper collates and presents key, but historically disparate, threads of Australian RPAS and NAS related information, and distils it with a filter focused on minimising RPAS collision risk. Our ongoing effort is motivated by the need to better understand the separation assurance contribution provided by the NAS layers, in the first instance, and subsequently employ this information to identify scenarios where the coincident collision risk is demonstrably low, providing legitimate substantiation for concessions on equipage and airworthiness standards.
Resumo:
An International Society of Sugar Cane Technologists (ISSCT) Engineering Workshop was held in Piracicaba, Brazil from 30 June to 4 July 2008. The theme of the workshop was Design, manufacturing and maintenance of sugar mill equipment. The workshop consisted of a series of technical sessions and site visits. The Brazilian sugar industry is growing rapidly. The growth has occurred as the result of the sugar industry’s position as a key provider of renewable energy in the form of ethanol and, more recently, electricity. The increased focus on electricity is seeing investment in high pressure (100 bar) boilers, cane cleaning plants that allow an increased biomass supply from trash and digesters that produce biogas from dunder. It is clear that the Brazilian sugar industry has a well defined place in the country’s future. The ISSCT workshop provided a good opportunity to gain information from equipment suppliers and discuss new technology that may have application in Australia. The new technologies of interest included IMCO sintered carbide shredder hammer tips, Fives Cail MillMax mills, planetary mill gearboxes, Bosch Projects chainless diffusers, Fives Cail Zuka centrifugals and Vaperma Siftek membrane systems.
Resumo:
The ISSCT Engineering Workshop 2008 in Brazil was well attended with 62 participants including 39 overseas visitors from 15 countries. The workshop addressed the theme Design, manufacturing and maintenance of sugar mill equipment. From the technical sessions, the following conclusions were drawn: • Several speakers articulated a shared vision of the future of the Brazilian sugar industry. This shared vision gives considerable confidence that the vision can become a reality. • There is an increased focus on energy products. As a result, the reduction of factory energy consumption in order to maximise the energy available for products is also a focus. • New equipment and products are being developed with reduced power consumption, lower capital and maintenance costs, and better performance. • Methods presented for reducing maintenance costs included the use of a maintenance management system, condition monitoring and material selection. The workshop was held in conjunction with Piracicaba’s annual SIMTEC exhibition for the sugar and alcohol industries that provides a forum for technical presentations and discussion, and showcases products and services from manufacturers and service providers. In return for holding the workshop in conjunction with SIMTEC, SIMTEC provided sponsorship for the workshop, including paying travel and accommodation costs for two invited speakers, and organisation for the workshop. The ISSCT and SIMTEC technical programs were arranged so that their technical sessions did not clash, and the ISSCT program was extended a day to provide an opportunity for ISSCT participants to attend the SIMTEC exhibition. Informal feedback from workshop participants suggested that the arrangement between ISSCT and SIMTEC worked well. Site visits to two manufacturing facilities and two sugar mills were arranged as part of the workshop.