945 resultados para Epithelial-mesenchymal crosstalk


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cancer stem cells are cancer cells characterized by stem cell properties and represent a small population of tumor cells that drives tumor development, progression, metastasis and drug resistance. To date, the molecular mechanisms that generate and regulate cancer stem cells are not well defined. BORIS (Brother of Regulator of Imprinted Sites) or CTCFL (CTCF-like) is a DNA-binding protein that is expressed in normal tissues only in germ cells and is re-activated in tumors. Recent evidences have highlighted the correlation of BORIS/CTCFL expression with poor overall survival of different cancer patients. We have previously shown an association of BORIS-expressing cells with stemness gene expression in embryonic cancer cells. Here, we studied the role of BORIS in epithelial tumor cells. Using BORIS-molecular beacon that was already validated, we were able to show the presence of BORIS mRNA in cancer stem cell-enriched populations (side population and spheres) of cervical, colon and breast tumor cells. BORIS silencing studies showed a decrease of sphere formation capacity in breast and colon tumor cells. Importantly, BORIS-silencing led to down-regulation of hTERT, stem cell (NANOG, OCT4, SOX2 and BMI1) and cancer stem cell markers (ABCG2, CD44 and ALDH1) genes. Conversely, BORIS-induction led to up-regulation of the same genes. These phenotypes were observed in cervical, colon and invasive breast tumor cells. However, a completely different behavior was observed in the non-invasive breast tumor cells (MCF7). Indeed, these cells acquired an epithelial mesenchymal transition phenotype after BORIS silencing. Our results demonstrate that BORIS is associated with cancer stem cell-enriched populations of several epithelial tumor cells and the different phenotypes depend on the origin of tumor cells.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Inefficient alveolar wound repair contributes to the development of pulmonary fibrosis. Hepatocyte growth factor (HGF) is a potent growth factor for alveolar type II epithelial cells (AECII) and may improve repair and reduce fibrosis. We studied whether targeted gene transfer of HGF specifically to AECII improves lung fibrosis in bleomycin-induced lung fibrosis. A plasmid encoding human HGF expressed from the human surfactant protein C promoter (pSpC-hHGF) was designed, and extracorporeal electroporation-mediated gene transfer of HGF specifically to AECII was performed 7 days after bleomycin-induced lung injury in the rat. Animals were killed 7 days after hHGF gene transfer. Electroporation-mediated HGF gene transfer resulted in HGF expression specifically in AECII at biologically relevant levels. HGF gene transfer reduced pulmonary fibrosis as assessed by histology, hydroxyproline determination, and design-based stereology compared with controls. Our results indicate that the antifibrotic effect of HGF is due in part to a reduction of transforming growth factor-β(1), modulation of the epithelial-mesenchymal transition, and reduction of extravascular fibrin deposition. We conclude that targeted HGF gene transfer specifically to AECII decreases bleomycin-induced lung fibrosis and may therefore represent a novel cell-specific gene transfer technology to treat pulmonary fibrosis.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Formation of cartilage and bone involves sequential processes in which undifferentiated mesenchyme aggregates into primordial condensations which subsequently grow and differentiate, resulting in morphogenesis of the adult skeleton. While much has been learned about the structural molecules which comprise cartilage and bone, little is known about the nuclear factors which regulate chondrogenesis and osteogenesis. MHox is a homeobox-containing gene which is expressed in the mesenchyme of facial, limb, and vertebral skeletal precursors during mouse embryogenesis. MHox expression has been shown to require epithelial-derived signals, suggesting that MHox may regulate the epithelial-mesenchymal interactions required for skeletal organogenesis. To determine the functions of MHox, we generated a loss-of-function mutation in the MHox gene. Mice homozygous for a mutant MHox allele exhibit defects of skeletogenesis, involving the loss or malformation of craniofacial, limb and vertebral skeletal structures. The affected skeletal elements are derived from the cranial neural crest, as well as somitic and lateral mesoderm. Analysis of the mutant phenotype during ontogeny demonstrated a defect in the formation or growth of chondrogenic and osteogenic precursors. These findings provide evidence that MHox regulates the formation of preskeletal condensations from undifferentiated mesenchyme. In addition, generation of mice doubly mutant for the MHox and S8 homeobox genes reveal that these two genes interact to control formation of the limb and craniofacial skeleton. Mice carrying mutant alleles for S8 and MHox exhibit an exaggeration of the craniofacial and limb phenotypes observed in the MHox mutant mouse. Thus, MHox and S8 are components of a combinatorial genetic code controlling generation of the skeleton of the skull and limbs. ^

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In recent years, tumor budding in colorectal cancer has gained much attention as an indicator of lymph node metastasis, distant metastatic disease, local recurrence, worse overall and disease-free survival, and as an independent prognostic factor. Tumor buds, defined as the presence of single tumor cells or small clusters of up to five tumor cells at the peritumoral invasive front (peritumoral buds) or within the main tumor body (intratumoral buds), are thought to represent the morphological correlate of cancer cells having undergone epithelial-mesenchymal transition (EMT), an important mechanism for the progression of epithelial cancers. In contrast to their undisputed prognostic power and potential to influence clinical management, our current understanding of the biological background of tumor buds is less established. Most studies examining tumor buds have attempted to recapitulate findings of mechanistic EMT studies using immunohistochemical markers. The aim of this review is to provide a comprehensive summary of studies examining protein expression profiles of tumor buds and to illustrate the molecular pathways and crosstalk involved in their formation and maintenance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Signals transduced by the met tyrosine kinase, which is the receptor for scatter factor/hepatocyte growth factor, are of major importance for the regulation of epithelial cell motility, morphogenesis, and proliferation. We report here that different sets of tyrosine residues in the cytoplasmic domain of the met receptor affect signal transduction in epithelial cells in a positive or negative fashion: mutation of the C-terminal tyrosine residues 13-16 (Y1311, Y1347, Y1354, and Y1363) reduced or abolished ligand-induced cell motility and branching morphogenesis. In contrast, mutation of the juxtamembrane tyrosine residue 2 (Y1001) produced constitutively mobile, fibroblastoid cells. Furthermore, the gain-of-function mutation of tyrosine residue 2 suppressed the loss-of-function mutations of tyrosine residue 15 or 16. The opposite roles of the juxtamembrane and C-terminal tyrosine residues may explain the suggested dual function of the met receptor in both epithelial-mesenchymal interactions and tumor progression.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The transition of epithelial-like tumour cells to those exhibiting mesenchymal characteristics (Epithelial-to-mesenchymal Transition; EMT) is an integral process in breast cancer metastasis. EMT can be promoted by Transforming growth factor-beta (TGF-β) which can be found at high levels in the tumour stroma. Tumour-associated macrophages (TAMs) can also induce EMT in breast cancer cells, which is one way that they promote breast cancer metastasis. Vitamin D signalling has been implicated in EMT suppression and plays a role in modulating macrophage differentiation and stimulating their anti-inflammatory functions. This project had two major aims. First, we aimed to create and verify a unique fluorescent reporter gene construct designed to evaluate the dynamics of EMT in real-time and at the single-cell level. While some components of this reporter system were successfully validated, work to complete the final reporter construct is ongoing. The second and main aspect of this project focused on exploring the ability of 1,25-dihydroxyvitamin D3 (1,25D3) to modulate the interaction between mesenchymal mammary tumour cells and TAMs. Unexpectedly, in short-term treatment (48 hours) studies of 4T1 murine mammary tumour cells, we observed that 1,25D3 and TGF-β signalling work together to increase expression of the mesenchymal markers, Snai1, Fn1, and Col1a1. 1,25D3 and TGF-β also synergistically activate transcription of the gene encoding the 1,25D3-catabolizing enzyme, Cyp24a1. The ability of 1,25D3 and TGF-β to enhance expression of these genes was diminished in a long-term treatment (14 days) of 4T1 cells, and this effect was accompanied by a decrease in cell proliferation. 1,25D3 may also cooperate with cytokines produced by normal macrophages and macrophages considered to be TAM-like. Conditioned media experiments revealed that in the presence of factors from normal macrophages, 1,25D3 enhanced expression of Fn1, and in the presence of factors from TAM-like macrophages, 1,25D3 enhanced expression of Fn1 and Cyp24a1. Rather than mitigating the interaction as hypothesized, 1,25D3 may exacerbate the tumour-promoting effects of the EMT-TAM relationship. Also, signalling pathways involved in the EMT-TAM relationship may synergize with 1,25D3 to upregulate Cyp24a1 expression. These findings are important for understanding the potential of vitamin D compounds to be used in the treatment of breast cancer.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: In women with breast cancer submitted to neoadjuvant chemotherapy based in doxorubicin, tumor expression of groups of three genes (PRSS11, MTSS1, CLPTM1 and PRSS11, MTSS1, SMYD2) have classified them as responsive or resistant. We have investigated whether expression of these trios of genes could predict mammary carcinoma response in dogs and whether tumor slices, which maintain epithelial-mesenchymal interactions, could be used to evaluate drug response in vitro. Methods: Tumors from 38 dogs were sliced and cultured with or without doxorubicin 1 mu M for 24 h. Tumor cells were counted by two observers to establish a percentage variation in cell number, between slices. Based on these results, a reduction in cell number between treated and control samples >= 21.7%, arbitrarily classified samples, as drug responsive. Tumor expression of PRSS11, MTSS1, CLPTM1 and SMYD2, was evaluated by real time PCR. Relative expression results were then transformed to their natural logarithm values, which were spatially disposed according to the expression of trios of genes, comprising PRSS11, MTSS1, CLPTM1 and PRSS11, MTSS1, SMYD2. Fisher linear discrimination test was used to generate a separation plane between responsive and non-responsive tumors. Results: Culture of tumor slices for 24 h was feasible. Nine samples were considered responsive and 29 non-responsive to doxorubicin, considering the pre-established cut-off value of cell number reduction = 21.7%, between doxorubicin treated and control samples. Relative gene expression was evaluated and tumor samples were then spatially distributed according to the expression of the trios of genes: PRSS11, MTSS1, CLPTM1 and PRSS11, MTSS1, SMYD2. A separation plane was generated. However, no clear separation between responsive and non-responsive samples could be observed. Conclusion: Three-dimensional distribution of samples according to the expression of the trios of genes PRSS11, MTSS1, CLPTM1 and PRSS11, MTSS1, SMYD2 could not predict doxorubicin in vitro responsiveness. Short term culture of mammary gland cancer slices may be an interesting model to evaluate chemotherapy activity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Our aim was to evaluate the interaction between breast cancer cells and nodal fibroblasts, by means of their gene expression profile. Fibroblast primary cultures were established from negative and positive lymph nodes from breast cancer patients and a similar gene expression pattern was identified, following cell culture. Fibroblasts and breast cancer cells (MDA-MB231, MDA-MB435, and MCF7) were cultured alone or co-cultured separated by a porous membrane (which allows passage of soluble factors) for comparison. Each breast cancer lineage exerted a particular effect on fibroblasts viability and transcriptional profile. However, fibroblasts from positive and negative nodes had a parallel transcriptional behavior when co-cultured with a specific breast cancer cell line. The effects of nodal fibroblasts on breast cancer cells were also investigated. MDA MB-231 cells viability and migration were enhanced by the presence of fibroblasts and accordingly, MDA-MB435 and MCF7 cells viability followed a similar pattern. MDA-MB231 gene expression profile, as evaluated by cDNA microarray, was influenced by the fibroblasts presence, and HNMT, COMT, FN3K, and SOD2 were confirmed downregulated in MDA-MB231 co-cultured cells with fibroblasts from both negative and positive nodes, in a new series of RT-PCR assays. In summary, transcriptional changes induced in breast cancer cells by fibroblasts from positive as well as negative nodes are very much alike in a specific lineage. However, fibroblasts effects are distinct in each one of the breast cancer lineages, suggesting that the inter-relationships between stromal and malignant cells are dependent on the intrinsic subtype of the tumor.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

While many studies have addressed the direct effects of 1 alpha,25(OH)(2)D(3) on breast cancer (BC) cells, stromal-epithelial interactions, which are important for the tumor development, have been largely ignored. In addition, high concentrations of the hormone, which cannot be attained in vivo, have been used. Our aim was to establish a more physiological breast cancer model, represented by BC tissue slices, which maintain epithelial-mesenchymal interactions, cultured with a relatively low 1 alpha,25(OH)(2)D(3) concentration, in order to evaluate the vitamin D pathway. Freshly excised human BC samples were sliced and cultured in complete culture media containing vehicle, 0.5 nM or 100 nM 1 alpha,25(OH)(2)D(3) for 24 h. BC slices remained viable for at least 24 h, as evaluated by preserved tissue morphology in hematoxylin and eosin (HE) stained sections and bromodeoxyuridine (BrdU) incorporation by 10% of tumor cells. VDR mRNA expression was detected in all samples and CYP24A1 mRNA expression was induced by 1 alpha,25(OH)(2)D(3) in both concentrations (but mainly with 100 nM). Our results indicate that the vitamin D signaling pathway is functional in BC slices, a model which preserves stromal-epithelial interactions and mimics in vivo conditions. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background. Cyclosporine A (CsA)-induced chronic nephrotoxicity is characterized by renal dysfunction and interstitial fibrosis. Early and progressive renal macrophage influx, correlating with latter interstitial fibrotic areas, has been associated with CsA treatment. This study investigated the role of macrophages, the nitric oxide (NO) pathway, and the oxidative stress on chronic CsA nephrotoxicity. Methods. The macrophages were depleted by clodronate liposomes. Animals were distributed into four groups: vehicle (olive oil for 21 days), CsA 7.5 mg/kg per day (21 days), CsA plus clodronate (5 mg/mL intraperitoneally on days -4, 1, 4, 11, and 18 of CsA treatment), or vehicle plus clodronate. On day 22, glomerular filtration rate, renal blood flow, renal tubulointerstitial fibrosis, CsA blood levels, serum malondialdehyde and renal tissue immunohistochemistry for macrophages, inducible NO synthase, transforming growth factor-beta, nuclear factor-k beta, alpha-smooth muscle actin, vimentin, and nitrotyrosine were assessed. Results. CsA-induced increase in the macrophage was prevented by clodronate. Macrophage depletion attenuated the reductions in the glomerular filtration rate and renal blood flow, the development of tubulointerstitial fibrosis, malondialdehyde increase and increases in nuclear factor-k beta, transforming growth factor-beta, vimentin, inducible NO synthase, and nitrotyrosine expression provoked by CsA. Clodronate did not affect alpha-smooth muscle actin expression and CsA blood levels. Conclusions. Renal macrophage influx plays an important role in CsA-induced chronic nephrotoxicity. The NO pathway and oxidative stress are likely mechanisms involved in the genesis of this form of renal injury.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ischemia and reperfusion injury (IRI) contributes to the development of chronic interstitial fibrosis/tubular atrophy in renal allograft patients, Cyclooxygenase (COX) 1 and 2 actively participate in acute ischemic injury by activating endothelial cells and inducing oxidative stress. Furthermore, blockade of COX I and 2 has been associated with organ improvement after ischemic damage. The aim of this study was to evaluate the role of COX I and 2 in the development of fibrosis by performing a COX I and 2 blockade immediately before IRI We subjected C57BI/6 male mice to 60 min of unilateral renal pedicle occlusion, Prior to surgery mice were either treated with indomethacin (IMT) at days -1 and 0 or were untreated. Blood and kidney samples were collected 6 wks after IRI. Kidney samples were analyzed by real-time reverse transcription-poly me rase chain reaction for expression of transforming growth factor beta (TGF-beta), monocyte chemoattractant protein 1 (MCP-1), osteopontin (OPN), tumor necrosis factor alpha (TNF-alpha), interleukin (IL)-1 beta, IL-10, heme oxygenose 1 (HO-1), vimentin, connective-tissue growth factor (CTGF), collagen 1, and bone morphogenic protein 7 (BMP-7), To assess tissue fibrosis we performed morphometric analyses and Sirius red staining. We also performed immunohistochemical analysis of anti-actin smooth muscle, Renal function did not significantly differ between groups. Animals pretreated with IMT showed significantly less interstitial fibrosis than nontreated animals. Gene transcript analyses showed decreased expression of TGF-beta, MCP-1,TNF-alpha, IL-1-beta, vimentin, collagen 1, CTGF and IL-10 mRNA (all P < 0.05), Moreover, HO-I mRNA was increased in animals pretreated with IMT (P < 0.05) Conversely, IMT treatment decreased osteopontin expression and enhanced BMP-7 expression, although these levels did rot reach statistical significance when compared with control expression levels, I he blockade of COX 1 and 2 resulted in less tissue fibrosis, which was associated with a decrease in proinflammatory cytokines and enhancement of the protective cellular response.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Glioblastoma is the most frequent and malignant brain tumor, characterized by an elevated capacity for cellular proliferation and invasion. Recently, it was demonstrated that podoplanin membrane sialo-glycoprotein encoded by PDPN gene is over-expressed and related to cellular invasion in astrocytic tumors; however the mechanisms of regulation are still unknown. MicroRNAs are noncoding RNAs that regulate gene expression and several biological processes and diseases, including cancer. Nevertheless, their roles in invasion, proliferation, and apoptosis of glioblastoma are not completely understood. In this study, we focused on miR-29b and miR-125a, which were predicted to regulate PDPN, and demonstrated that these microRNAs directly target the 30 untranslated region of PDPN and inhibit invasion, apoptosis, and proliferation of glioblastomas. Furthermore, we report that miR-29b and miR-125a are downregulated in glioblastomas and also in CD133-positive cells. Taken together, these results suggest that miR-29b and miR-125a represent potential therapeutic targets in glioblastoma. (C) 2010 Wiley-Liss, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Morphogenesis of salivary glands involves complex coordinated events. Synchronisation between cell proliferation, polarisation and differentiation, which are dependent on epithelial-mesenchymal interactions and on the microenvironment, is a requirement. Growth factors mediate many of these orchestrated biological processes and transforming growth factor-beta (TGF-beta) appear to be relevant. Using immunohistochemistry and immunofluorescence, we have mapped the distribution of TGF-beta 1, 2 and 3 and compared it with the expression of maturation markers in human salivary glands obtained from foetuses ranging from weeks 4 to 24 of gestation. TGF-beta 1 first appeared during canalisation stage in the surrounding mesenchyme and, in the more differentiated stages, was expressed in the cytoplasm of acinar cells throughout the adult gland. TGF-beta 2 was detected since the bud stage of the salivary gland. Its expression was observed in ductal cells and increased along gland differentiation, TGF-beta 3 was detected from the canalisation stage of the salivary gland, being weakly expressed on ductal cells, and it was the only factor detected on myoepithelial cells. The data suggest that TGF-beta have a role to play in salivary gland development and differentiation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this study, Bmp-4, Wnt-5a and Shh gene expressions were compared during early craniofacial development in mice by comparative non-isotopic in situ hybridization. Wild-type C57BL/6J mice were studied at various stages of embryonic development (from 8.5- to 13.5-day-old embryos - E8.5-13.5). During early odontogenesis, transcripts for Bmp-4, Shh and Wnt-5a were co-localised at the tooth initiation stage. At E8.5, Shh mRNA expression was restricted to diencephalon and pharyngeal endoderm. Before maxillae and mandible ossification, Bmp-4 and Wnt-5a signals were detected in the mesenchymal cells and around Meckel`s cartilage. During palatogenesis, Shh was expressed only in the epithelium and Wnt-5a only in the mesenchyme of the elevating palatal shelves. During tongue development, Shh expression was found in mesenchyme, probably contributing to tongue miogenesis, while Wnt-5a signal was in the epithelium, possibly during placode development and papillae formation. Taken together, these findings suggest that Bmp-4, Shh and Wnt-5a gene expressions may act together on the epithelial mesenchymal interactions occurring in several aspects of the early mouse craniofacial development, such as odontogenesis, neuronal development, maxillae and mandible ossification, palatogenesis and tongue formation. (C) 2009 Elsevier GmbH. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Transforming growth factor-beta (TGF-beta) is a multifunctional growth factor that has several biological effects in vivo including control of cell growth and differentiation, cell migration, lineage determination, motility, adhesion, apoptosis, and synthesis and degradation of extracellular matrix, and TGF-beta plays an important role in regulating tissue repair and regeneration. Our study analyzed the participation of TGF-beta 1, -beta 2, and -beta 3 in the different stages of morphogenesis and differentiation of human developing dental organ using immunobistochemistry. The maxillae and mandibles of 10 human embryos ranging from 8 to 23 weeks of gestation were employed, according to the approval of the ethical committee. Our study revealed that the TGF-beta subunits-beta 1, beta 2, and beta 3 were present in the various stages of tooth development, but the expression varied according to the differentiation stage, tissue, and TGF-beta subunit. Our results indicated that TGF-beta 1 is closely related to differentiation of enamel organ and initiation of matrix secretion, TGF-beta 2 to cellular differentiation, and TGF-beta 3 to mineral maturation matrix.