975 resultados para Epidemiology. Cancer
Resumo:
Background. In the past two decades, the incidence of thyroid cancer in the United States (US) has been increasing. There has been debate on whether the increase is real or an artifact of improved diagnostic scrutiny. Methods. We linked SEER9 database with 2000 US Census to obtain county-level SES (Socioeconomic Status) and compared thyroid cancer incidence trends between high and low SES counties. Joinpoint analysis was used to assess the thyroid cancer incidence trends. Annual Percentage Changes (APCs) were calculated to evaluate incidence trends. Results . The thyroid cancer incidence in high SES counties increased moderately (APC1=+2.5*, *P<0.05) before late 1990s and dramatically increased (APC2=+6.3*) after late 1990s, whereas incidence in low SES counties increased moderately (APC=+3.5*) during the entire time period (1980–2008). For smaller tumors (≤4cm), the APCs in high and low SES counties are similar to each other before late 1990s, but the incidence in high SES counties increased dramatically after late 1990s while that in low SES counties continued at a moderate increase. For large tumors (>4cm), the incidence trends in high SES counties are similar to those of low SES counties, which had a steady moderate increase. Conclusion. Our findings indicate that enhanced detection likely contributed to the increased thyroid cancer incidence in the past decades but cannot fully explain the increase, suggesting that a true increase also exists. Efforts should be made on identifying the cause of this observed increased incidence as well as more refined/selected screening and prevention measures.^
Resumo:
Prepared for the ICRDB Program by the Current Cancer Research Project Analysis Center.
Resumo:
Prepared for the ICRDB Program by the Current Cancer Research Project Analysis Center.
Resumo:
"February 1996."
Resumo:
Although smoking is widely recognized as a major cause of cancer, there is little information on how it contributes to the global and regional burden of cancers in combination with other risk factors that affect background cancer mortality patterns. We used data from the American Cancer Society's Cancer Prevention Study II (CPS-II) and the WHO and IARC cancer mortality databases to estimate deaths from 8 clusters of site-specific cancers caused by smoking, for 14 epidemiologic subregions of the world, by age and sex. We used lung cancer mortality as an indirect marker for accumulated smoking hazard. CPS-II hazards were adjusted for important covariates. In the year 2000, an estimated 1.42 (95% CI 1.27-1.57) million cancer deaths in the world, 21% of total global cancer deaths, were caused by smoking. Of these, 1.18 million deaths were among men and 0.24 million among women; 625,000 (95% CI 485,000-749,000) smoking-caused cancer deaths occurred in the developing world and 794,000 (95% CI 749,000-840,000) in industrialized regions. Lung cancer accounted for 60% of smoking-attributable cancer mortality, followed by cancers of the upper aerodigestive tract (20%). Based on available data, more than one in every 5 cancer deaths in the world in the year 2000 were caused by smoking, making it possibly the single largest preventable cause of cancer mortality. There was significant variability across regions in the role of smoking as a cause of the different site-specific cancers. This variability illustrates the importance of coupling research and surveillance of smoking with that for other risk factors for more effective cancer prevention. (C) 2005 Wiley-Liss, Inc.
Resumo:
The research goal was to document differences in the epidemiology of prostate cancer among multicultural men [non-Hispanic White (NHW), Hispanic (H), non-Hispanic Black (NHB)], and Black subgroups, particularly among NHB subgroups [US-born (USB) and Caribbean-born (CBB)]. Study findings will be useful in supporting further research into Black subgroups. Aim 1 explored changes over time in reported prostate cancer prevalence, by race/ethnicity and by birthplace (within the Black subgroups). Aim 2 investigated relationships between observed and latent variables. The analytical approaches included confirmatory factor analysis (CFA for measurement models) and structural equation modeling (SEM for regression models). National Center for Health Statistics, National Health Interview Survey (NHIS) data from 1999–2008 were used. The study sample included men aged 18 and older, grouped by race/ethnicity. Among the CBB group, survey respondents were limited to the English-speaking Caribbean. Prostate cancer prevalence, by race showed a higher trend among NHB men than NHW men overall, however differences over time were not significant. CBB men reported a higher proportion of prostate cancer among cancers diagnosed than USB men overall. Due to small sample sizes, stable prostate cancer prevalence trends could not be assessed over time nor could trends in the receipt of a PSA exam among NHB men when stratified by birthplace. USB and CBB men differ significantly in their screening behavior. The effect of SES on PSA screening adjusted for risk factors was statistically significant while latent variable lifestyle was not. Among risk factors, family history of cancer exhibited a consistent positive effect on PSA screening for both USB and CBB men. Among the CBB men, the number of years lived in the US did not significantly affect PSA screening behavior. When NHB men are stratified by birthplace, CBB men had a higher overall prevalence of prostate cancer diagnoses than USB men although not statistically significant. USB men were 2 to 3 times more likely to have had a PSA exam compared to CBB men, but among CBB men birthplace did not make a significant difference in screening behavior. Latent variable SES, but not lifestyle, significantly affected the likelihood of a PSA exam.
Resumo:
Increases in pediatric thyroid cancer incidence could be partly due to previous clinical intervention. This retrospective cohort study used 1973-2012 data from the Surveillance Epidemiology and End Results program to assess the association between previous radiation therapy exposure in development of second primary thyroid cancer (SPTC) among 0-19-year-old children. Statistical analysis included the calculation of summary statistics and univariable and multivariable logistic regression analysis. Relative to no previous radiation therapy exposure, cases exposed to radiation had 2.46 times the odds of developing SPTC (95% CI: 1.39-4.34). After adjustment for sex and age at diagnosis, Hispanic children who received radiation therapy for a first primary malignancy had 3.51 times the odds of developing SPTC compared to Hispanic children who had not received radiation therapy, [AOR=3.51, 99% CI: 0.69-17.70, p=0.04]. These findings support the development of age-specific guidelines for the use of radiation based interventions among children with and without cancer.
Resumo:
OBJECTIVE: To compare, in patients with cancer and in healthy subjects, measured resting energy expenditure (REE) from traditional indirect calorimetry to a new portable device (MedGem) and predicted REE. DESIGN: Cross-sectional clinical validation study. SETTING: Private radiation oncology centre, Brisbane, Australia. SUBJECTS: Cancer patients (n = 18) and healthy subjects (n = 17) aged 37-86 y, with body mass indices ranging from 18 to 42 kg/m(2). INTERVENTIONS: Oxygen consumption (VO(2)) and REE were measured by VMax229 (VM) and MedGem (MG) indirect calorimeters in random order after a 12-h fast and 30-min rest. REE was also calculated from the MG without adjustment for nitrogen excretion (MGN) and estimated from Harris-Benedict prediction equations. Data were analysed using the Bland and Altman approach, based on a clinically acceptable difference between methods of 5%. RESULTS: The mean bias (MGN-VM) was 10% and limits of agreement were -42 to 21% for cancer patients; mean bias -5% with limits of -45 to 35% for healthy subjects. Less than half of the cancer patients (n = 7, 46.7%) and only a third (n = 5, 33.3%) of healthy subjects had measured REE by MGN within clinically acceptable limits of VM. Predicted REE showed a mean bias (HB-VM) of -5% for cancer patients and 4% for healthy subjects, with limits of agreement of -30 to 20% and -27 to 34%, respectively. CONCLUSIONS: Limits of agreement for the MG and Harris Benedict equations compared to traditional indirect calorimetry were similar but wide, indicating poor clinical accuracy for determining the REE of individual cancer patients and healthy subjects.