988 resultados para Enzyme levels
Resumo:
A hipertensão arterial está entre as causas mais freqüentes de morte materna. Entre os tipos presentes na gravidez destacam-se as manifestações específicas, isto é, a pré-eclâmpsia e a hipertensão gestacional, definidas clinicamente por aumento dos níveis da pressão arterial após a 20ª semana de gestação, associado (pré-eclâmpsia) ou não (hipertensão gestacional) à proteinúria. Na fase inicial a doença é assintomática, porém, quando não tratada ou não se interrompe a gestação, sua evolução natural é desenvolver as formas graves, como a eclâmpsia e a síndrome HELLP. Eclâmpsia é definida pela manifestação de uma ou mais crises convulsivas tônico-clônicas generalizadas e/ou coma, em gestante com hipertensão gestacional ou pré-eclâmpsia, na ausência de doenças neurológicas. Pode ocorrer durante a gestação, durante o trabalho de parto e no puerpério imediato. É comumente precedida pelos sinais e sintomas de eclâmpsia iminente (distúrbios do sistema nervoso central, visuais e gástricos). A associação de hemólise, plaquetopenia e disfunção hepática já era relatada na literatura na década de cinqüenta. em 1982, Weinstein reuniu estas alterações sob o acrônimo de HELLP, significando hemólise (H), aumento de enzimas hepáticas (EL) e plaquetopenia (LP), e denominou-as de síndrome HELLP. A literatura diverge em relação aos valores dos parâmetros que definem a síndrome. Sibai et al. (1986) propuseram sistematização dos padrões laboratoriais e bioquímicos para o diagnóstico da mesma, que foi adotada pelo Ministério da Saúde do Brasil. As manifestações clínicas podem ser imprecisas, sendo comuns queixas como dor epigástrica, mal-estar geral, inapetência, náuseas e vômitos. O diagnóstico precoce é, eminentemente, laboratorial e deve ser pesquisado de maneira sistemática nas mulheres com pré-eclâmpsia grave/eclâmpsia e/ou dor no quadrante superior direito do abdome. Diferenciar a síndrome HELLP de outras ocorrências, com manifestações clínicas e/ou laboratoriais semelhantes, não é tarefa fácil. O diagnóstico diferencial é particularmente difícil para doenças como púrpura trombocitopênica trombótica, síndrome hemolítico-urêmica e fígado gorduroso agudo da gravidez, devido à insuficiente história clínica e à semelhança dos aspectos fisiopatológicos. O conhecimento da fisiopatologia da pré-eclâmpsia, o diagnóstico precoce e a atuação precisa no momento adequado nas situações complicadas pela eclâmpsia e/ou síndrome HELLP permitem melhorar o prognóstico materno e perinatal.
Resumo:
The activities of the enzymes aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), lactate dehydrogenase (LD), creatine kinase (CK), amylase (AMS) and angiotensin converting enzyme (ACE) have been used to assess the toxic effects of xenobiotics that have hypoglycaemic action in hepatic, pancreatic, renal and muscle tissue. Using a validated experimental model of diabetes mellitus in rats, we ascertained whether this syndrome itself affected the serum activities of these enzymes over a 53-day period. Levels of hepatic enzymes AST, ALT and ALP were higher in the streptozotocin (STZ)diabetic rats (group D), but were controlled by insulin therapy (group DI). AMS was reduced in group D and unchanged in group DI rats. Proteinuria was detected 1 day after STZ administation and partially controlled by insulin (group DI); its early presence in group D rats, and the lack of any change in serum ACE in this group, indicates that proteinuria is the better marker for microangiopathy. Microscopic examination of liver, kidney, heart and skeletal muscles (soleus and extensor digitorum longus) revealed various alterations in group D rat tissues, which were less pronounced in group DI. The liver, pancreas and kidney tissue-damage was consistent with the altered serum levels of AST, ALT, ALP and AMS and proteinuria. We conclude that: (i) rigorous control is required when these serum-enzyme levels are used as indicators of tissue toxicity in experimental diabetes, and (ii) LD, CK and bilirubin serum levels, which are unaffected by diabetes, can be used when testing effects of xenobiotics on tissues.
Resumo:
Glycogen synthase, an enzyme involved in glycogen biosynthesis, is regulated by phosphorylation and by the allosteric ligand glucose-6-phosphate (G6P). In addition, enzyme levels can be regulated by changes in gene expression. We recently cloned a cDNA for glycogen synthase (gsn) from Neurospora crassa, and showed that gsn transcription decreased when cells were exposed to heat shock (shifted from 30degreesC to 45degreesC). In order to understand the mechanisms that control gsn expression, we isolated the gene, including its 5' and 3' flanking regions, from the genome of N. crassa. An ORF of approximately 2.4 kb was identified, which is interrupted by four small introns (II-V). Intron I (482 bp) is located in the 5'UTR region. Three putative Transcription Initiation Sites (TISs) were mapped, one of which lies downstream of a canonical TATA-box sequence (5'-TGTATAAA-3'). Analysis of the 5'-flanking region revealed the presence of putative transcription factor-binding sites, including Heat Shock Elements (HSEs) and STress Responsive Elements (STREs). The possible involvement of these motifs in the negative regulation of gsn transcription was investigated using Electrophoretic Mobility Shift Assays (EMSA) with nuclear extracts of N. crassa mycelium obtained before and after heat shock, and DNA fragments encompassing HSE and STRE elements from the 5'-flanking region. While elements within the promoter region are involved in transcription under heat shock, elements in the 5'UTR intron may participate in transcription during vegetative growth. The results thus suggest that N. crassa possesses trans-acting elements that interact with the 5'-flanking region to regulate gsn transcription during heat shock and vegetative growth.
Resumo:
The final levels of ethanol (levels of ethanol produced plus that added initially to the media) reached by the thermotolerant yeasts were highest (16.5-20.3%, v/v) at 8% initial ethanol. The thermotolerant yeasts were found to have the following characteristics: constant levels of ethanol formation (10.5-12.3%, v/v), fog additions of external ethanol within the range 2-8% (v/v) of initial ethanol; constant values of product coefficients when initial ethanol was in the range of 2-6%, which increased or decreased, depending on the strain, when initial ethanol exceeded 6%; growth activity was inhibited at different levels of addition of external ethanol when final biomass and specific rate of growth were compared; significant differences among the yeast strains in the amount of external ethanol capable of reducing biomass formation by one half. In addition, the viability of the strains (early stationary phase) varied with the amount of external ethanol, the lowest viabilities occurring at concentrations of initial ethanol ranging from 4 to 7% and the highest in the range of 7 to 8% (v/v). The relative levels of trehalose (with/without 7% ethanol added initially) in the yeast strains (the stationary phase) ranged from 1.03 to 1.75, suggesting that the effect of produced ethanol on trehalose accumulation was stronger than that of external ethanol. The levels of final ethanol shown by the yeast strains were also correlated with the cellular levels of glycerol-3-phosphate dehydrogenase (increase in enzyme levels with decrease in final ethanol) for cells harvested at the stationary phase.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Rangelia vitalii is a protozoon that causes diseases in dogs, and anemia is the most common laboratory finding. However, few studies on the biochemical changes in dogs infected with this protozoon exist. Thus, this study aimed to investigate the biochemical changes in dogs experimentally infected with R. vitalii, during the acute phase of the infection. For this study, 12 female dogs (aged 6-12 months and weighing between 4 and 7 kg) were used, divided in two groups. Group A was composed of healthy dogs (n = 5); and group B consisted of infected animals (n = 7). Blood samples were collected on days 0, 10, 20 and 30 after infection, using tubes without anticoagulant to obtain serum and analyze the biochemical parameters. An increase in alanine aminotransferase (ALT) on day 20 (P < 0.05) was observed. Also, increased creatine kinase (CK) and aspartate aminotransferase (AST) levels were observed throughout the experimental period (P < 0.05). No changes in the serum gamma-glutamyltransferase, urea and creatinine levels were observed. Thus, is possible to conclude that experimental infection with R. vitalii in dogs causes changes to the biochemical profile, with increased ALT, AST and CK enzyme levels.
Resumo:
Non-alcoholic steatohepatitis (NASH) has a prevalence of 1% in Western countries. Its causes as well as its medical treatment are, to date, still debated. Recently, studies of agents suggested to have antiapoptotic, insulin-sensitizing or anti-inflammatory effects in patients with NASH have been conducted, one of which is ursodeoxycholic acid (UDCA), a tertiary bile acid. Between 1994 and 2008, four prospective randomized, double-blind, placebo-controlled studies of the treatment of NASH with UDCA were conducted. The first study, by Lindor et al., compared the impact of 13-15 mg/kg/day of UDCA to a placebo. The second study by Dufour et al. had an additional third arm that administered combination therapy with UDCA and vitamin E. The third and fourth studies by Leuschner et al. and by Ratziu et al. evaluated high doses of UDCA at 25-35 mg/kg/day, and used liver biopsies and serum liver enzyme levels to evaluate the impact of UDCA. With the exception of Ratziu et al.'s study, which was lacking a second liver biopsy, none of these studies showed any significant differences in the treatment of NASH with UDCA compared with a placebo. However, Dufour et al. did observe a significant improvement of NASH with the combination (UDCA/VitE) vs placebo therapy, whereas UDCA monotherapy was not effective in the treatment of NASH. Nevertheless, the effects of other bile acids and combination therapies need to be explored.
Resumo:
BACKGROUND: Alcohol dependence is extremely common in patients with bipolar disorder and is associated with unfavorable outcomes including treatment nonadherence, violence, increased hospitalization, and decreased quality of life. While naltrexone is a standard treatment for alcohol dependence, no controlled trials have examined its use in patients with co-morbid bipolar disorder and alcohol dependence. In this pilot study, the efficacy of naltrexone in reducing alcohol use and on mood symptoms was assessed in bipolar disorder and alcohol dependence. METHODS: Fifty adult outpatients with bipolar I or II disorders and current alcohol dependence with active alcohol use were randomized to 12 weeks of naltrexone (50 mg/d) add-on therapy or placebo. Both groups received manual-driven cognitive behavioral therapy designed for patients with bipolar disorder and substance-use disorders. Drinking days and heavy drinking days, alcohol craving, liver enzymes, and manic and depressed mood symptoms were assessed. RESULTS: The 2 groups were similar in baseline and demographic characteristics. Naltrexone showed trends (p < 0.10) toward a greater decrease in drinking days (binary outcome), alcohol craving, and some liver enzyme levels than placebo. Side effects were similar in the 2 groups. Response to naltrexone was significantly related to medication adherence. CONCLUSIONS: Results suggest the potential value and acceptable tolerability of naltrexone for alcohol dependence in bipolar disorder patients. A larger trial is needed to establish efficacy.
Resumo:
$\beta$1,4-Galactosyltransferase (GalTase) is unusual among the glycosyltransferases in that it is found in two subcellular compartments where it performs different functions. In the trans-Golgi complex, GalTase participates in oligosaccharide biosynthesis as do other glycosyltransferases. GalTase is also found on the cell surface, where it associates with the cytoskeleton and functions as a receptor for extracellular oligosaccharide ligands. Although we know much regarding GalTase function on the cell surface, little is known about the mechanisms underlying its transport to the plasma membrane. Cloning of the GalTase gene revealed that there are two GalTase proteins (i.e., long and short) with different size cytoplasmic tails. This raises the possibility that differences in the cytoplasmic domain of GalTase may influence its subcellular distribution. The object of this study was to examine this hypothesis directly through the use of molecular, immunological, and biochemical approaches.^ To examine whether the two GalTase proteins are targeted to different subcellular compartments, F9 embryonal carcinoma cells were transfected with either long or short GalTase cDNAs and intracellular and cell surface enzyme levels measured. Cell surface GalTase activity was enriched in cells overexpressing the long, but not the form of short GalTase. Furthermore, a dominant negative mutation in cell surface GalTase was created by transfecting cells with GalTase cDNAs encoding a truncated version of long GalTase devoid of the extracellular catalytic domain. Overexpressing the complete cytoplasmic and transmembrane domains of long GalTase led to a loss of GalTase-dependent cellular adhesion by specifically displacing surface GalTase from its cytoskeletal associations. In contrast, overexpressing the analogous truncated protein of short GalTase had no effect on cell adhesion. Finally, chloramphenicol acetyltransferase (CAT) reporter proteins were used to determine directly whether the cytoplasmic domains of long and short GalTase were responsible for differential subcellular distribution. The cytoplasmic and transmembrane domains of long GalTase led to CAT expression on the ceil surface and its association with the detergent-insoluble cytoskeleton; the analogous fusion protein containing short GalTase was restricted to the Golgi compartment. These results suggest that the cytoplasmic domain unique to long GalTase is responsible for targeting a portion of this protein to the cell surface and associating it with the cytoskeleton, enabling it to function as a cell adhesion molecule. ^
Resumo:
A (1→3,1→4)‐β‐D‐glucan endohydrolase [(1→3,1→4)‐β‐glucanase, EC 3.2.1.73] was detected in wheat (Triticum aestivum L.) leaves by Western analyses and activity measurements. This enzyme is able to degrade the (1→3,1→4)‐β‐glucans present in the cell walls of cereals and other grass species. In wheat, enzyme levels clearly increased during leaf development, reaching maximum values at full expansion and then decreasing upon leaf ageing. To test whether the abundance of (1→3,1→4)‐β‐glucanase might be controlled by the carbohydrate status, environmental and nutritional conditions capable of altering the leaf soluble sugar contents were used. Both the activity and enzyme protein levels rapidly and markedly increased when mature leaves were depleted of sugars (e.g. during extended dark periods), whereas elevated carbohydrate contents (e.g. following continuous illumination, glucose supply in the dark or nitrogen deficiency during a light/dark cycle) caused a rapid decrease in (1→3,1→4)‐β‐glucanase abundance or prevented its accumulation in the leaves. The physiological significance of (1→3,1→4)‐β‐glucanase accumulation under sugar depletion remains to be elucidated.
Resumo:
Using Arabidopsis, we analyzed the effect of omission of a nitrogen source and of the addition of different nitrogen-containing compounds on the extractable activity and the enzyme and mRNA accumulation of adenosine 5′-phosphosulfate reductase (APR). During 72 h without a nitrogen source, the APR activity decreased to 70% and 50% of controls in leaves and roots, respectively, while cysteine (Cys) and glutathione contents were not affected. Northern and western analysis revealed that the decrease of APR activity was correlated with decreased mRNA and enzyme levels. The reduced APR activity in roots could be fully restored within 24 h by the addition of 4 mM each of NO3 −, NH4 +, or glutamine (Gln), or 1 mM O-acetylserine (OAS). 35SO4 2− feeding showed that after addition of NH4 +, Gln, or OAS to nitrogen-starved plants, incorporation of 35S into proteins significantly increased in roots; however, glutathione and Cys labeling was higher only with Gln and OAS or with OAS alone, respectively. OAS strongly increased mRNA levels of all three APR isoforms in roots and also those of sulfite reductase, Cys synthase, and serine acetyltransferase. Our data demonstrate that sulfate reduction is regulated by nitrogen nutrition at the transcriptional level and that OAS plays a major role in this regulation.
Resumo:
Houston, Texas maintains the appropriate climate and mosquito populations to support the circulation of dengue viruses. The city is susceptible to the introduction and subsequent local transmission of dengue virus with its proximity to dengue-endemic Mexico and the high degree of international travel routed through its airports. In 2008, a study at the University of Texas School of Public Health identified 58 suspected dengue fever cases that presented at hospitals and clinics in the Houston area. Serum or CSF samples of the 58 samples tested positive or equivocal for the presence of anti-dengue IgM antibodies (Rodriguez, 2008). Here, we present the results of an investigation aimed to describe the clinical characteristics of the 58 suspected dengue fever cases and to determine if local transmission had occurred. Data from medical record abstractions and personal telephone interviews were used to describe clinical characteristics and travel history of the suspected cases. Our analysis classified six probable dengue fever cases based on the case definition from the World Health Organization. Three of the probable cases for which we were able to obtain travel history had not recently traveled to an endemic area prior to onset of symptoms suggesting the illnesses were locally acquired in Houston. Further analysis led us to hypothesize that additional cases of dengue fever are present in our study population. Fifty-one percent of the study population was diagnosed with meningitis and/or encephalitis. Sixty percent of the individuals who received a lumbar puncture had abnormal CSF. Together these findings indicate viral infection with neurological involvement, which has been reported to occur with dengue fever. Among the individuals who received liver enzyme analysis, 54% had evidence of abnormal liver enzyme levels, a clinical sign commonly observed with dengue. Our results indicate that a suspected outbreak of dengue fever with autochthonous transmission occurred in the Houston area between 2003 and 2005. ^
Resumo:
Extracellular signals regulate fungal development and, to sense and respond to these cues, fungi evolved signal transduction pathways similar to those in mammalian systems. In fungi, heterotrimeric G proteins, composed of α, β, and γ subunits, transduce many signals, such as pheromones and nutrients, intracellularly to alter adenylyl cyclase and MAPK cascades activity. ^ Previously, the Gα proteins GNA-1 and GNA-2 were characterized in regulating development in the fungus Neurospora crassa. R. A. Baasiri isolated a third Gα, gna-3, and P. S. Rowley generated Δgna-3 mutants. GNA-3 belongs to a fungal Gα family that regulates cAMP metabolism and virulence. The Δ gna-3 sexual cycle is defective in homozygous crosses, producing inviable spores. Δgna-3 mutants have reduced aerial hyphae formation and derepressed asexual sporulation (conidiation), causing accumulation of asexual spores (conidia). These defects are similar to an adenylyl cyclase mutant, cr-1; cAMP supplementation suppressed Δ gna-3 and cr-1. Inappropriate conidiation and expression of a conidiation gene, con-10, were higher in Δ gna-3 than cr-1 submerged cultures; peptone suppressed conidiation. Adenylyl cyclase activity and expression demonstrated that GNA-3 regulates enzyme levels. ^ A Δgna-1 cr-1 was analyzed with F. D. Ivey to differentiate GNA-1 roles in cAMP-dependent and -independent pathways. Δ gna-1 cr-1 defects were worse than cr-1 and refractory to cAMP, suggesting that GNA-1 is necessary for sensing extracellular CAMP. Submerged culture conidiation was highest in Δgna-1 cr-1, and only high cell density Δgna-1 cultures conidiated, which correlated with con-10 levels. Transcription of a putative heat shock cognate protein was highest in Δgna-1 cr-1. ^ Functional relationships between the three Gαs was analyzed by constructing Δgna-1 Δgna-2 Δ gna-3, Δgna-1 Δgna-3, and Δgna-2 Δgna-3 strains. Δ gna-2 Δgna-3 strains exhibited intensified Δ gna-3 phenotypes; Δgna-1 Δgna-2 Δgna-3 and Δgna-1 Δ gna-3 strains were identical to Δgna-1 cr-1 on plates and were non-responsive to cAMP. The highest levels of conidiation and con-10 were detected in submerged cultures of Δ gna-1 Δgna-2 Δgna-3 and Δgna-1 Δgna-3 mutants, which was partially suppressed by peptone supplementation. Stimulation of adenylyl cyclase is completely deficient in Δgna-1 Δ gna-2 Δgna-3 and Δgna-1 Δ gna-3 strains. Δgna-3 and Δ gna-1 Δgna-3 aerial hyphae and conidiation defects were suppressed by mutation of a PKA regulatory subunit. ^
Resumo:
Salicylic acid-induced protein kinase (SIPK) and wounding-induced protein kinase (WIPK), two distinct members of the mitogen-activated protein (MAP) kinase family, are activated in tobacco resisting infection by tobacco mosaic virus (TMV). WIPK activation by TMV depends on the disease-resistance gene N because infection of susceptible tobacco not carrying the N gene failed to activate WIPK. Activation of WIPK required not only posttranslational phosphorylation but also a preceding rise in its mRNA and de novo synthesis of WIPK protein. The induction by TMV of WIPK mRNA and protein also occurred systemically. Its activation at the mRNA, protein, and enzyme levels was independent of salicylic acid. The regulation of WIPK at multiple levels by an N gene-mediated signal(s) suggests that this MAP kinase may be an important component upstream of salicylic acid in the signal-transduction pathway(s) leading to local and systemic resistance to TMV.