988 resultados para Engineering laboratories
Resumo:
Policy makers increasingly recognise that an educated workforce with a high proportion of Science, Technology, Engineering and Mathematics (STEM) graduates is a pre-requisite to a knowledge-based, innovative economy. Over the past ten years, the proportion of first university degrees awarded in Australia in STEM fields is below the global average and continues to decrease from 22.2% in 2002 to 18.8% in 2010 [1]. These trends are mirrored by declines between 20% and 30% in the proportions of high school students enrolled in science or maths. These trends are not unique to Australia but their impact is of concern throughout the policy-making community. To redress these demographic trends, QUT embarked upon a long-term investment strategy to integrate education and research into the physical and virtual infrastructure of the campus, recognising that expectations of students change as rapidly as technology and learning practices change. To implement this strategy, physical infrastructure refurbishment/re-building is accompanied by upgraded technologies not only for learning but also for research. QUT’s vision for its city-based campuses is to create vibrant and attractive places to learn and research and to link strongly to the wider surrounding community. Over a five year period, physical infrastructure at the Gardens Point campus was substantially reconfigured in two key stages: (a) a >$50m refurbishment of heritage-listed buildings to encompass public, retail and social spaces, learning and teaching “test beds” and research laboratories and (b) destruction of five buildings to be replaced by a $230m, >40,000m2 Science and Engineering Centre designed to accommodate retail, recreation, services, education and research in an integrated, coordinated precinct. This landmark project is characterised by (i) self-evident, collaborative spaces for learning, research and social engagement, (ii) sustainable building practices and sustainable ongoing operation and; (iii) dynamic and mobile re-configuration of spaces or staffing to meet demand. Innovative spaces allow for transformative, cohort-driven learning and the collaborative use of space to prosecute joint class projects. Research laboratories are aggregated, centralised and “on display” to the public, students and staff. A major visualisation space – the largest multi-touch, multi-user facility constructed to date – is a centrepiece feature that focuses on demonstrating scientific and engineering principles or science oriented scenes at large scale (e.g. the Great Barrier Reef). Content on this visualisation facility is integrated with the regional school curricula and supports an in-house schools program for student and teacher engagement. Researchers are accommodated in a combined open-plan and office floor-space (80% open plan) to encourage interdisciplinary engagement and cross-fertilisation of skills, ideas and projects. This combination of spaces re-invigorates the on-campus experience, extends educational engagement across all ages and rapidly enhances research collaboration.
Resumo:
The University of Queensland (UQ) has extensive laboratory facilities associated with each course in the undergraduate electrical engineering program. The laboratories include machines and drives, power systems simulation, power electronics and intelligent equipment diagnostics. A number of postgraduate coursework programs are available at UQ and the courses associated with these programs also use laboratories. The machine laboratory is currently being renovated with i-lab style web based experimental facilities, which could be remotely accessed. Senior level courses use independent projects using laboratory facilities and this is found to be very useful to improve students' learning skill. Laboratory experiments are always an integral part of a course. Most of the experiments are conducted in a group of 2-3 students and thesis projects in BE and major projects in ME are always individual works. Assessment is done in-class for the performance and also for the report and analysis.
Resumo:
BACKGROUND OR CONTEXT Laboratories provide the physical spaces for engineering students to connect with theory and have a personal hands-on learning experience. Learning space design and development is well established in many universities however laboratories are often not part of that movement. While active, collaborative and group learning pedagogies are all key words in relation to these new spaces the concepts have always been central to laboratory based learning. The opportunity to build on and strengthen good practice in laboratories is immense. In the 2001 review “Universities in Crisis” many references are made to the decline of laboratories. One such comment in the review was made by Professor Ian Chubb (AVCC), who in 2013, as Chief Scientist for Australia, identifies the national concern about STEM education and presents a strategic plan to address the challenges ahead. What has been achieved and changed in engineering teaching and research laboratories in this time? PURPOSE OR GOAL A large number of universities in Australia and New Zealand own laboratory and other infrastructure designed well for the era they were built but now showing signs of their age, unable to meet the needs of today’s students, limiting the effectiveness of learning outcomes and presenting very low utilisation rates. This paper will present a model for new learning space design that improves student experience and engagement, supporting academic aims and significantly raising the space utilisation rate. APPROACH A new approach in laboratory teaching and research including new management has been adopted by the engineering disciplines at QUT. Flexibility is an underpinning principle along with the modularisation of fixed teaching and learning equipment, high utilisation of spaces and dynamic pedagogical approaches. The revitalised laboratories and workshop facilities are used primarily for the engineering disciplines and increasingly for integrated use across many disciplines in the STEM context. The new approach was built upon a base of an integrated faculty structure from 2005 and realised in 2010 as an associated development with the new Science and Engineering Centre (SEC). Evaluation through student feedback surveys for practical activities, utilisation rate statistics and uptake by academic and technical staff indicate a very positive outcome. DISCUSSION Resulting from this implementation has been increased satisfaction by students, creation of social learning and connecting space and an environment that meets the needs and challenges of active, collaborative and group learning pedagogies. Academic staff are supported, technical operations are efficient and laboratories are effectively utilised. RECOMMENDATIONS/IMPLICATIONS/CONCLUSION Future opportunities for continuous improvement are evident in using the student feedback to rectify faults and improve equipment, environment and process. The model is easily articulated and visible to other interested parties to contribute to sector wide development of learning spaces.
Resumo:
In this paper, the work that has been done in several laboratories and academic institutions in India in the area of wind engineering in the past 20–30 years has been reviewed. Studies on extreme and mean hourly winds, philosophies adopted in model studies in wind tunnels and some of the important results that have been obtained are described. Suggestions for future studies are indicated.
Resumo:
Environmental engineering is a core component of most construction and surveying undergraduate courses. It is generally accepted that students on these courses should have an understanding of thermal comfort, heat transfer, condensation, lighting, noise transmission and acoustics. Experiments are essential in developing students’ awareness and understanding of the underlying physical concepts which drive environmental engineering solutions. Traditionally these experiments have been conducted by students working in small groups in laboratories. However, increasing student numbers and, in particular, the growth in part time study, have placed significant additional demands on limited laboratory resources. The availability of reasonably priced, simple, hand-held equipment has made it possible for students to conduct experiments outside the confines of the laboratory. Furthermore, various professional software packages (some of which are freely available online) enable the resultant data to be further developed and analysed in conjunction with the conventional textbook approach. This paper examines these alternative approaches to the traditional laboratory experiment. An assessment is provided of the types of experiment which are both possible and appropriate, and the efficacy of these approaches is considered.
Resumo:
THE ninth edition of the International Conference on Remote Engineering and Virtual Instrumentation (REV) [1] was held at the Faculty of Engineering of the University of Deusto, Bilbao (Spain), from the 4th to the 6th of July, 2012. A world-class research community in the subject of remote and virtual laboratories joined the event.
Resumo:
Within the pedagogical community, Serious Games have arisen as a viable alternative to traditional course-based learning materials. Until now, they have been based strictly on software solutions. Meanwhile, research into Remote Laboratories has shown that they are a viable, low-cost solution for experimentation in an engineering context, providing uninterrupted access, low-maintenance requirements, and a heightened sense of reality when compared to simulations. This paper will propose a solution where both approaches are combined to deliver a Remote Laboratory-based Serious Game for use in engineering and school education. The platform for this system is the WebLab-Deusto Framework, already well-tested within the remote laboratory context, and based on open standards. The laboratory allows users to control a mobile robot in a labyrinth environment and take part in an interactive game where they must locate and correctly answer several questions, the subject of which can be adapted to educators' needs. It also integrates the Google Blockly graphical programming language, allowing students to learn basic programming and logic principles without needing to understand complex syntax.
Resumo:
Practical sessions are the backbone of qualification in engineering education. It leads to a better understanding and allows mastering scientific concepts and theories. The lack of the availability of practical sessions at many universities and institutions owing to the cost and the unavailability of instructors the most of the time caused a significant decline in experimentation in engineering education over the last decades. Recently, with the progress of computer-based learning, remote laboratories have been proven to be the best alternative to the traditional ones, regarding to its low cost and ubiquity. Some universities have already started to deploy remote labs in their practical sessions. This contribution compiles diverse experiences based on the deployment of the remote laboratory, Virtual Instrument Systems in Reality (VISIR), on the practices of undergraduate engineering grades at various universities within the VISIR community. It aims to show the impact of its usage on engineering education concerning the assessments of students and teachers as well.
Resumo:
Remote Laboratories or WebLabs constitute a first-order didactic resource in engineering faculties. However, in many cases, they lack a proper software design, both in the client and server side, which degrades their quality and academic usefulness. This paper presents the main characteristics of a Remote Laboratory, analyzes the software technologies to implement the client and server sides in a WebLab, and correlates these technologies with the characteristics to facilitate the selection of a technology to implement a WebLab. The results obtained suggest the adoption of a Service Oriented Laboratory Architecture-based approach for the design of future Remote Laboratories so that client-agnostic Remote Laboratories and Remote Laboratory composition are enabled. The experience with the real Remote Laboratory, WebLab-Deusto, is also presented.
Resumo:
Tissue engineering is a discipline that aims at regenerating damaged biological tissues by using a cell-construct engineered in vitro made of cells grown into a porous 3D scaffold. The role of the scaffold is to guide cell growth and differentiation by acting as a bioresorbable temporary substrate that will be eventually replaced by new tissue produced by cells. As a matter or fact, the obtainment of a successful engineered tissue requires a multidisciplinary approach that must integrate the basic principles of biology, engineering and material science. The present Ph.D. thesis aimed at developing and characterizing innovative polymeric bioresorbable scaffolds made of hydrolysable polyesters. The potentialities of both commercial polyesters (i.e. poly-e-caprolactone, polylactide and some lactide copolymers) and of non-commercial polyesters (i.e. poly-w-pentadecalactone and some of its copolymers) were explored and discussed. Two techniques were employed to fabricate scaffolds: supercritical carbon dioxide (scCO2) foaming and electrospinning (ES). The former is a powerful technology that enables to produce 3D microporous foams by avoiding the use of solvents that can be toxic to mammalian cells. The scCO2 process, which is commonly applied to amorphous polymers, was successfully modified to foam a highly crystalline poly(w-pentadecalactone-co-e-caprolactone) copolymer and the effect of process parameters on scaffold morphology and thermo-mechanical properties was investigated. In the course of the present research activity, sub-micrometric fibrous non-woven meshes were produced using ES technology. Electrospun materials are considered highly promising scaffolds because they resemble the 3D organization of native extra cellular matrix. A careful control of process parameters allowed to fabricate defect-free fibres with diameters ranging from hundreds of nanometers to several microns, having either smooth or porous surface. Moreover, versatility of ES technology enabled to produce electrospun scaffolds from different polyesters as well as “composite” non-woven meshes by concomitantly electrospinning different fibres in terms of both fibre morphology and polymer material. The 3D-architecture of the electrospun scaffolds fabricated in this research was controlled in terms of mutual fibre orientation by properly modifying the instrumental apparatus. This aspect is particularly interesting since the micro/nano-architecture of the scaffold is known to affect cell behaviour. Since last generation scaffolds are expected to induce specific cell response, the present research activity also explored the possibility to produce electrospun scaffolds bioactive towards cells. Bio-functionalized substrates were obtained by loading polymer fibres with growth factors (i.e. biomolecules that elicit specific cell behaviour) and it was demonstrated that, despite the high voltages applied during electrospinning, the growth factor retains its biological activity once released from the fibres upon contact with cell culture medium. A second fuctionalization approach aiming, at a final stage, at controlling cell adhesion on electrospun scaffolds, consisted in covering fibre surface with highly hydrophilic polymer brushes of glycerol monomethacrylate synthesized by Atom Transfer Radical Polymerization. Future investigations are going to exploit the hydroxyl groups of the polymer brushes for functionalizing the fibre surface with desired biomolecules. Electrospun scaffolds were employed in cell culture experiments performed in collaboration with biochemical laboratories aimed at evaluating the biocompatibility of new electrospun polymers and at investigating the effect of fibre orientation on cell behaviour. Moreover, at a preliminary stage, electrospun scaffolds were also cultured with tumour mammalian cells for developing in vitro tumour models aimed at better understanding the role of natural ECM on tumour malignity in vivo.
Resumo:
Broad consensus has been reached within the Education and Cognitive Psychology research communities on the need to center the learning process on experimentation and concrete application of knowledge, rather than on a bare transfer of notions. Several advantages arise from this educational approach, ranging from the reinforce of students learning, to the increased opportunity for a student to gain greater insight into the studied topics, up to the possibility for learners to acquire practical skills and long-lasting proficiency. This is especially true in Engineering education, where integrating conceptual knowledge and practical skills assumes a strategic importance. In this scenario, learners are called to play a primary role. They are actively involved in the construction of their own knowledge, instead of passively receiving it. As a result, traditional, teacher-centered learning environments should be replaced by novel learner-centered solutions. Information and Communication Technologies enable the development of innovative solutions that provide suitable answers to the need for the availability of experimentation supports in educational context. Virtual Laboratories, Adaptive Web-Based Educational Systems and Computer-Supported Collaborative Learning environments can significantly foster different learner-centered instructional strategies, offering the opportunity to enhance personalization, individualization and cooperation. More specifically, they allow students to explore different kinds of materials, to access and compare several information sources, to face real or realistic problems and to work on authentic and multi-facet case studies. In addition, they encourage cooperation among peers and provide support through coached and scaffolded activities aimed at fostering reflection and meta-cognitive reasoning. This dissertation will guide readers within this research field, presenting both the theoretical and applicative results of a research aimed at designing an open, flexible, learner-centered virtual lab for supporting students in learning Information Security.
Resumo:
The engineering careers models were diverse in Europe, and are adopting now in Spain the Bolonia process for European Universities. Separated from older Universities, that are in part technically active, Civil Engineering (Caminos, Canales y Puertos) started at end of 18th century in Spain adopting the French models of Upper Schools for state civil servants with exam at entry. After 1800 intense wars, to conserve forest regions Ingenieros de Montes appeared as Upper School, and in 1855 also the Ingenieros Agrónomos to push up related techniques and practices. Other Engineers appeared as Upper Schools but more towards private factories. These ES got all adapted Lower Schools of Ingeniero Tecnico. Recently both grew much in number and evolved, linked also to recognized Professions. Spanish society, into European Community, evolved across year 2000, in part highly well, but with severe discordances, that caused severe youth unemployment with 2008-2011 crisis. With Bolonia process high formal changes step in from 2010-11, accepted with intense adaptation. The Lower Schools are changing towards the Upper Schools, and both that have shifted since 2010-11 various 4-years careers (Grado), some included into the precedent Professions, and diverse Masters. Acceptation of them to get students has started relatively well, and will evolve, and acceptation of new grades for employment in Spain, Europe or outside will be essential. Each Grado has now quite rigid curricula and programs, MOODLE was introduced to connect pupils, some specific uses of Personal Computers are taught in each subject. Escuela de Agronomos centre, reorganized with its old name in its precedent buildings at entrance of Campus Moncloa, offers Grados of Agronomic Engineering and Science for various public and private activities for agriculture, Alimentary Engineering for alimentary activities and control, Agro-Environmental Engineering more related to environment activities, and in part Biotechnology also in laboratories in Campus Monte-Gancedo for Biotechnology of Plants and Computational Biotechnology. Curricula include Basics, Engineering, Practices, Visits, English, ?project of end of career?, Stays. Some masters will conduce to specific professional diploma, list includes now Agro-Engineering, Agro-Forestal Biotechnology, Agro and Natural Resources Economy, Complex Physical Systems, Gardening and Landscaping, Rural Genie, Phytogenetic Resources, Plant Genetic Resources, Environmental Technology for Sustainable Agriculture, Technology for Human Development and Cooperation.
Resumo:
Virtual and remote laboratories(VRLs) are e-learning resources which enhance the accessibility of experimental setups providing a distance teaching framework which meets the student's hands-on learning needs. In addition, online collaborative communication represents a practical and a constructivist method to transmit the knowledge and experience from the teacher to students, overcoming physical distance and isolation. Thus, the integration of learning environments in the form of VRLs inside collaborative learning spaces is strongly desired. Considering these facts, the authors of this document present an original approach which enables user to share practical experiences while they work collaboratively through the Internet. This practical experimentation is based on VRLs, which have been integrated inside a synchronous collaborative e-learning framework. This article describes the main features of this system and its successful application for science and engineering subjects.
Resumo:
This article presents an interactive Java software platform which enables any user to easily create advanced virtual laboratories (VLs) for Robotics. This novel tool provides both support for developing applications with full 3D interactive graphical interface and a complete functional framework for modelling and simulation of arbitrary serial-link manipulators. In addition, its software architecture contains a high number of functionalities included as high-level tools, with the advantage of allowing any user to easily develop complex interactive robotic simulations with a minimum of programming. In order to show the features of the platform, the article describes, step-by-step, the implementation methodology of a complete VL for Robotics education using the presented approach. Finally, some educational results about the experience of implementing this approach are reported.