886 resultados para Engineering, Industrial|Artificial Intelligence
Resumo:
The paper describes a new approach to artificial intelligence (AI) and its role in design. This approach argues that AI can be seen as 'text', or in other words as a medium for the communication of design knowledge and information between designers. This paper will apply these ideas to reinterpreting an existing knowledge-based system (KBS) design tool, that is, CADET - a product design evaluation tool. The paper will discuss the authorial issues, amongst others, involved in the development of AI and KBS design tools by adopting this new approach. Consequently, the designers' rights and responsibilities will be better understood as the knowledge medium, through its concern with authorship, returns control to users rather than attributing the system with agent status. © 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
The field of Artificial Intelligence, which started roughly half a century ago, has a turbulent history. In the 1980s there has been a major paradigm shift towards embodiment. While embodied artificial intelligence is still highly diverse, changing, and far from "theoretically stable", a certain consensus about the important issues and methods has been achieved or is rapidly emerging. In this non-technical paper we briefly characterize the field, summarize its achievements, and identify important issues for future research. One of the fundamental unresolved problems has been and still is how thinking emerges from an embodied system. Provocatively speaking, the central issue could be captured by the question "How does walking relate to thinking?" © Springer-Verlag Berlin Heidelberg 2004.
Resumo:
This report concentrates on progress during the last two years at the M.I.T. Artificial Intelligence Laboratory. Topics covered include the representation of knowledge, understanding English, learning and debugging, understanding vision and productivity technology. It is stressed that these various areas are tied closely together through certain fundamental issues and problems.
Resumo:
Editorial
Resumo:
Editorial for 17th AICS Conference
Resumo:
This study explores using artificial neural networks to predict the rheological and mechanical properties of underwater concrete (UWC) mixtures and to evaluate the sensitivity of such properties to variations in mixture ingredients. Artificial neural networks (ANN) mimic the structure and operation of biological neurons and have the unique ability of self-learning, mapping, and functional approximation. Details of the development of the proposed neural network model, its architecture, training, and validation are presented in this study. A database incorporating 175 UWC mixtures from nine different studies was developed to train and test the ANN model. The data are arranged in a patterned format. Each pattern contains an input vector that includes quantity values of the mixture variables influencing the behavior of UWC mixtures (that is, cement, silica fume, fly ash, slag, water, coarse and fine aggregates, and chemical admixtures) and a corresponding output vector that includes the rheological or mechanical property to be modeled. Results show that the ANN model thus developed is not only capable of accurately predicting the slump, slump-flow, washout resistance, and compressive strength of underwater concrete mixtures used in the training process, but it can also effectively predict the aforementioned properties for new mixtures designed within the practical range of the input parameters used in the training process with an absolute error of 4.6, 10.6, 10.6, and 4.4%, respectively.