877 resultados para Engineering, Electronics and Electrical|Artificial Intelligence


Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the advantages and popularity of Permanent Magnet (PM) motors due to their high power density, there is an increasing incentive to use them in variety of applications including electric actuation. These applications have strict noise emission standards. The generation of audible noise and associated vibration modes are characteristics of all electric motors, it is especially problematic in low speed sensorless control rotary actuation applications using high frequency voltage injection technique. This dissertation is aimed at solving the problem of optimizing the sensorless control algorithm for low noise and vibration while achieving at least 12 bit absolute accuracy for speed and position control. The low speed sensorless algorithm is simulated using an improved Phase Variable Model, developed and implemented in a hardware-in-the-loop prototyping environment. Two experimental testbeds were developed and built to test and verify the algorithm in real time.^ A neural network based modeling approach was used to predict the audible noise due to the high frequency injected carrier signal. This model was created based on noise measurements in an especially built chamber. The developed noise model is then integrated into the high frequency based sensorless control scheme so that appropriate tradeoffs and mitigation techniques can be devised. This will improve the position estimation and control performance while keeping the noise below a certain level. Genetic algorithms were used for including the noise optimization parameters into the developed control algorithm.^ A novel wavelet based filtering approach was proposed in this dissertation for the sensorless control algorithm at low speed. This novel filter was capable of extracting the position information at low values of injection voltage where conventional filters fail. This filtering approach can be used in practice to reduce the injected voltage in sensorless control algorithm resulting in significant reduction of noise and vibration.^ Online optimization of sensorless position estimation algorithm was performed to reduce vibration and to improve the position estimation performance. The results obtained are important and represent original contributions that can be helpful in choosing optimal parameters for sensorless control algorithm in many practical applications.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A wireless mesh network is a mesh network implemented over a wireless network system such as wireless LANs. Wireless Mesh Networks(WMNs) are promising for numerous applications such as broadband home networking, enterprise networking, transportation systems, health and medical systems, security surveillance systems, etc. Therefore, it has received considerable attention from both industrial and academic researchers. This dissertation explores schemes for resource management and optimization in WMNs by means of network routing and network coding.^ In this dissertation, we propose three optimization schemes. (1) First, a triple-tier optimization scheme is proposed for load balancing objective. The first tier mechanism achieves long-term routing optimization, and the second tier mechanism, using the optimization results obtained from the first tier mechanism, performs the short-term adaptation to deal with the impact of dynamic channel conditions. A greedy sub-channel allocation algorithm is developed as the third tier optimization scheme to further reduce the congestion level in the network. We conduct thorough theoretical analysis to show the correctness of our design and give the properties of our scheme. (2) Then, a Relay-Aided Network Coding scheme called RANC is proposed to improve the performance gain of network coding by exploiting the physical layer multi-rate capability in WMNs. We conduct rigorous analysis to find the design principles and study the tradeoff in the performance gain of RANC. Based on the analytical results, we provide a practical solution by decomposing the original design problem into two sub-problems, flow partition problem and scheduling problem. (3) Lastly, a joint optimization scheme of the routing in the network layer and network coding-aware scheduling in the MAC layer is introduced. We formulate the network optimization problem and exploit the structure of the problem via dual decomposition. We find that the original problem is composed of two problems, routing problem in the network layer and scheduling problem in the MAC layer. These two sub-problems are coupled through the link capacities. We solve the routing problem by two different adaptive routing algorithms. We then provide a distributed coding-aware scheduling algorithm. According to corresponding experiment results, the proposed schemes can significantly improve network performance.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Given the importance of color processing in computer vision and computer graphics, estimating and rendering illumination spectral reflectance of image scenes is important to advance the capability of a large class of applications such as scene reconstruction, rendering, surface segmentation, object recognition, and reflectance estimation. Consequently, this dissertation proposes effective methods for reflection components separation and rendering in single scene images. Based on the dichromatic reflectance model, a novel decomposition technique, named the Mean-Shift Decomposition (MSD) method, is introduced to separate the specular from diffuse reflectance components. This technique provides a direct access to surface shape information through diffuse shading pixel isolation. More importantly, this process does not require any local color segmentation process, which differs from the traditional methods that operate by aggregating color information along each image plane. ^ Exploiting the merits of the MSD method, a scene illumination rendering technique is designed to estimate the relative contributing specular reflectance attributes of a scene image. The image feature subset targeted provides a direct access to the surface illumination information, while a newly introduced efficient rendering method reshapes the dynamic range distribution of the specular reflectance components over each image color channel. This image enhancement technique renders the scene illumination reflection effectively without altering the scene’s surface diffuse attributes contributing to realistic rendering effects. ^ As an ancillary contribution, an effective color constancy algorithm based on the dichromatic reflectance model was also developed. This algorithm selects image highlights in order to extract the prominent surface reflectance that reproduces the exact illumination chromaticity. This evaluation is presented using a novel voting scheme technique based on histogram analysis. ^ In each of the three main contributions, empirical evaluations were performed on synthetic and real-world image scenes taken from three different color image datasets. The experimental results show over 90% accuracy in illumination estimation contributing to near real world illumination rendering effects. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research involves the design, development, and theoretical demonstration of models resulting in integrated misbehavior resolution protocols for ad hoc networked devices. Game theory was used to analyze strategic interaction among independent devices with conflicting interests. Packet forwarding at the routing layer of autonomous ad hoc networks was investigated. Unlike existing reputation based or payment schemes, this model is based on repeated interactions. To enforce cooperation, a community enforcement mechanism was used, whereby selfish nodes that drop packets were punished not only by the victim, but also by all nodes in the network. Then, a stochastic packet forwarding game strategy was introduced. Our solution relaxed the uniform traffic demand that was pervasive in other works. To address the concerns of imperfect private monitoring in resource aware ad hoc networks, a belief-free equilibrium scheme was developed that reduces the impact of noise in cooperation. This scheme also eliminated the need to infer the private history of other nodes. Moreover, it simplified the computation of an optimal strategy. The belief-free approach reduced the node overhead and was easily tractable. Hence it made the system operation feasible. Motivated by the versatile nature of evolutionary game theory, the assumption of a rational node is relaxed, leading to the development of a framework for mitigating routing selfishness and misbehavior in Multi hop networks. This is accomplished by setting nodes to play a fixed strategy rather than independently choosing a rational strategy. A range of simulations was carried out that showed improved cooperation between selfish nodes when compared to older results. Cooperation among ad hoc nodes can also protect a network from malicious attacks. In the absence of a central trusted entity, many security mechanisms and privacy protections require cooperation among ad hoc nodes to protect a network from malicious attacks. Therefore, using game theory and evolutionary game theory, a mathematical framework has been developed that explores trust mechanisms to achieve security in the network. This framework is one of the first steps towards the synthesis of an integrated solution that demonstrates that security solely depends on the initial trust level that nodes have for each other.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Flow Cytometry analyzers have become trusted companions due to their ability to perform fast and accurate analyses of human blood. The aim of these analyses is to determine the possible existence of abnormalities in the blood that have been correlated with serious disease states, such as infectious mononucleosis, leukemia, and various cancers. Though these analyzers provide important feedback, it is always desired to improve the accuracy of the results. This is evidenced by the occurrences of misclassifications reported by some users of these devices. It is advantageous to provide a pattern interpretation framework that is able to provide better classification ability than is currently available. Toward this end, the purpose of this dissertation was to establish a feature extraction and pattern classification framework capable of providing improved accuracy for detecting specific hematological abnormalities in flow cytometric blood data. ^ This involved extracting a unique and powerful set of shift-invariant statistical features from the multi-dimensional flow cytometry data and then using these features as inputs to a pattern classification engine composed of an artificial neural network (ANN). The contribution of this method consisted of developing a descriptor matrix that can be used to reliably assess if a donor’s blood pattern exhibits a clinically abnormal level of variant lymphocytes, which are blood cells that are potentially indicative of disorders such as leukemia and infectious mononucleosis. ^ This study showed that the set of shift-and-rotation-invariant statistical features extracted from the eigensystem of the flow cytometric data pattern performs better than other commonly-used features in this type of disease detection, exhibiting an accuracy of 80.7%, a sensitivity of 72.3%, and a specificity of 89.2%. This performance represents a major improvement for this type of hematological classifier, which has historically been plagued by poor performance, with accuracies as low as 60% in some cases. This research ultimately shows that an improved feature space was developed that can deliver improved performance for the detection of variant lymphocytes in human blood, thus providing significant utility in the realm of suspect flagging algorithms for the detection of blood-related diseases.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over the past few decades, we have been enjoying tremendous benefits thanks to the revolutionary advancement of computing systems, driven mainly by the remarkable semiconductor technology scaling and the increasingly complicated processor architecture. However, the exponentially increased transistor density has directly led to exponentially increased power consumption and dramatically elevated system temperature, which not only adversely impacts the system's cost, performance and reliability, but also increases the leakage and thus the overall power consumption. Today, the power and thermal issues have posed enormous challenges and threaten to slow down the continuous evolvement of computer technology. Effective power/thermal-aware design techniques are urgently demanded, at all design abstraction levels, from the circuit-level, the logic-level, to the architectural-level and the system-level. ^ In this dissertation, we present our research efforts to employ real-time scheduling techniques to solve the resource-constrained power/thermal-aware, design-optimization problems. In our research, we developed a set of simple yet accurate system-level models to capture the processor's thermal dynamic as well as the interdependency of leakage power consumption, temperature, and supply voltage. Based on these models, we investigated the fundamental principles in power/thermal-aware scheduling, and developed real-time scheduling techniques targeting at a variety of design objectives, including peak temperature minimization, overall energy reduction, and performance maximization. ^ The novelty of this work is that we integrate the cutting-edge research on power and thermal at the circuit and architectural-level into a set of accurate yet simplified system-level models, and are able to conduct system-level analysis and design based on these models. The theoretical study in this work serves as a solid foundation for the guidance of the power/thermal-aware scheduling algorithms development in practical computing systems.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inverters play key roles in connecting sustainable energy (SE) sources to the local loads and the ac grid. Although there has been a rapid expansion in the use of renewable sources in recent years, fundamental research, on the design of inverters that are specialized for use in these systems, is still needed. Recent advances in power electronics have led to proposing new topologies and switching patterns for single-stage power conversion, which are appropriate for SE sources and energy storage devices. The current source inverter (CSI) topology, along with a newly proposed switching pattern, is capable of converting the low dc voltage to the line ac in only one stage. Simple implementation and high reliability, together with the potential advantages of higher efficiency and lower cost, turns the so-called, single-stage boost inverter (SSBI), into a viable competitor to the existing SE-based power conversion technologies.^ The dynamic model is one of the most essential requirements for performance analysis and control design of any engineering system. Thus, in order to have satisfactory operation, it is necessary to derive a dynamic model for the SSBI system. However, because of the switching behavior and nonlinear elements involved, analysis of the SSBI is a complicated task.^ This research applies the state-space averaging technique to the SSBI to develop the state-space-averaged model of the SSBI under stand-alone and grid-connected modes of operation. Then, a small-signal model is derived by means of the perturbation and linearization method. An experimental hardware set-up, including a laboratory-scaled prototype SSBI, is built and the validity of the obtained models is verified through simulation and experiments. Finally, an eigenvalue sensitivity analysis is performed to investigate the stability and dynamic behavior of the SSBI system over a typical range of operation. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modern electric machine drives, particularly three phase permanent magnet machine drive systems represent an indispensable part of high power density products. Such products include; hybrid electric vehicles, large propulsion systems, and automation products. Reliability and cost of these products are directly related to the reliability and cost of these systems. The compatibility of the electric machine and its drive system for optimal cost and operation has been a large challenge in industrial applications. The main objective of this dissertation is to find a design and control scheme for the best compromise between the reliability and optimality of the electric machine-drive system. The effort presented here is motivated by the need to find new techniques to connect the design and control of electric machines and drive systems. ^ A highly accurate and computationally efficient modeling process was developed to monitor the magnetic, thermal, and electrical aspects of the electric machine in its operational environments. The modeling process was also utilized in the design process in form finite element based optimization process. It was also used in hardware in the loop finite element based optimization process. The modeling process was later employed in the design of a very accurate and highly efficient physics-based customized observers that are required for the fault diagnosis as well the sensorless rotor position estimation. Two test setups with different ratings and topologies were numerically and experimentally tested to verify the effectiveness of the proposed techniques. ^ The modeling process was also employed in the real-time demagnetization control of the machine. Various real-time scenarios were successfully verified. It was shown that this process gives the potential to optimally redefine the assumptions in sizing the permanent magnets of the machine and DC bus voltage of the drive for the worst operating conditions. ^ The mathematical development and stability criteria of the physics-based modeling of the machine, design optimization, and the physics-based fault diagnosis and the physics-based sensorless technique are described in detail. ^ To investigate the performance of the developed design test-bed, software and hardware setups were constructed first. Several topologies of the permanent magnet machine were optimized inside the optimization test-bed. To investigate the performance of the developed sensorless control, a test-bed including a 0.25 (kW) surface mounted permanent magnet synchronous machine example was created. The verification of the proposed technique in a range from medium to very low speed, effectively show the intelligent design capability of the proposed system. Additionally, to investigate the performance of the developed fault diagnosis system, a test-bed including a 0.8 (kW) surface mounted permanent magnet synchronous machine example with trapezoidal back electromotive force was created. The results verify the use of the proposed technique under dynamic eccentricity, DC bus voltage variations, and harmonic loading condition make the system an ideal case for propulsion systems.^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Catering to society's demand for high performance computing, billions of transistors are now integrated on IC chips to deliver unprecedented performances. With increasing transistor density, the power consumption/density is growing exponentially. The increasing power consumption directly translates to the high chip temperature, which not only raises the packaging/cooling costs, but also degrades the performance/reliability and life span of the computing systems. Moreover, high chip temperature also greatly increases the leakage power consumption, which is becoming more and more significant with the continuous scaling of the transistor size. As the semiconductor industry continues to evolve, power and thermal challenges have become the most critical challenges in the design of new generations of computing systems. ^ In this dissertation, we addressed the power/thermal issues from the system-level perspective. Specifically, we sought to employ real-time scheduling methods to optimize the power/thermal efficiency of the real-time computing systems, with leakage/ temperature dependency taken into consideration. In our research, we first explored the fundamental principles on how to employ dynamic voltage scaling (DVS) techniques to reduce the peak operating temperature when running a real-time application on a single core platform. We further proposed a novel real-time scheduling method, “M-Oscillations” to reduce the peak temperature when scheduling a hard real-time periodic task set. We also developed three checking methods to guarantee the feasibility of a periodic real-time schedule under peak temperature constraint. We further extended our research from single core platform to multi-core platform. We investigated the energy estimation problem on the multi-core platforms and developed a light weight and accurate method to calculate the energy consumption for a given voltage schedule on a multi-core platform. Finally, we concluded the dissertation with elaborated discussions of future extensions of our research. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experimental and theoretical studies regarding noise processes in various kinds of AlGaAs/GaAs heterostructures with a quantum well are reported. The measurement processes, involving a Fast Fourier Transform and analog wave analyzer in the frequency range from 10 Hz to 1 MHz, a computerized data storage and processing system, and cryostat in the temperature range from 78 K to 300 K are described in detail. The current noise spectra are obtained with the “three-point method”, using a Quan-Tech and avalanche noise source for calibration. ^ The properties of both GaAs and AlGaAs materials and field effect transistors, based on the two-dimensional electron gas in the interface quantum well, are discussed. Extensive measurements are performed in three types of heterostructures, viz., Hall structures with a large spacer layer, modulation-doped non-gated FETs, and more standard gated FETs; all structures are grown by MBE techniques. ^ The Hall structures show Lorentzian generation-recombination noise spectra with near temperature independent relaxation times. This noise is attributed to g-r processes in the 2D electron gas. For the TEGFET structures, we observe several Lorentzian g-r noise components which have strongly temperature dependent relaxation times. This noise is attributed to trapping processes in the doped AlGaAs layer. The trap level energies are determined from an Arrhenius plot of log (τT2) versus 1/T as well as from the plateau values. The theory to interpret these measurements and to extract the defect level data is reviewed and further developed. Good agreement with the data is found for all reported devices. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electronic noise has been investigated in AlxGa1−x N/GaN Modulation-Doped Field Effect Transistors (MODFETs) of submicron dimensions, grown for us by MBE (Molecular Beam Epitaxy) techniques at Virginia Commonwealth University by Dr. H. Morkoç and coworkers. Some 20 devices were grown on a GaN substrate, four of which have leads bonded to source (S), drain (D), and gate (G) pads, respectively. Conduction takes place in the quasi-2D layer of the junction (xy plane) which is perpendicular to the quantum well (z-direction) of average triangular width ∼3 nm. A non-doped intrinsic buffer layer of ∼5 nm separates the Si-doped donors in the AlxGa1−xN layer from the 2D-transistor plane, which affords a very high electron mobility, thus enabling high-speed devices. Since all contacts (S, D, and G) must reach through the AlxGa1−xN layer to connect internally to the 2D plane, parallel conduction through this layer is a feature of all modulation-doped devices. While the shunting effect may account for no more than a few percent of the current IDS, it is responsible for most excess noise, over and above thermal noise of the device. ^ The excess noise has been analyzed as a sum of Lorentzian spectra and 1/f noise. The Lorentzian noise has been ascribed to trapping of the carriers in the AlxGa1−xN layer. A detailed, multitrapping generation-recombination noise theory is presented, which shows that an exponential relationship exists for the time constants obtained from the spectral components as a function of 1/kT. The trap depths have been obtained from Arrhenius plots of log (τT2) vs. 1000/T. Comparison with previous noise results for GaAs devices shows that: (a) many more trapping levels are present in these nitride-based devices; (b) the traps are deeper (farther below the conduction band) than for GaAs. Furthermore, the magnitude of the noise is strongly dependent on the level of depletion of the AlxGa1−xN donor layer, which can be altered by a negative or positive gate bias VGS. ^ Altogether, these frontier nitride-based devices are promising for bluish light optoelectronic devices and lasers; however, the noise, though well understood, indicates that the purity of the constituent layers should be greatly improved for future technological applications. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A two-pronged approach for the automatic quantitation of multiple sclerosis (MS) lesions on magnetic resonance (MR) images has been developed. This method includes the design and use of a pulse sequence for improved lesion-to-tissue contrast (LTC) and seeks to identify and minimize the sources of false lesion classifications in segmented images. The new pulse sequence, referred to as AFFIRMATIVE (Attenuation of Fluid by Fast Inversion Recovery with MAgnetization Transfer Imaging with Variable Echoes), improves the LTC, relative to spin-echo images, by combining Fluid-Attenuated Inversion Recovery (FLAIR) and Magnetization Transfer Contrast (MTC). In addition to acquiring fast FLAIR/MTC images, the AFFIRMATIVE sequence simultaneously acquires fast spin-echo (FSE) images for spatial registration of images, which is necessary for accurate lesion quantitation. Flow has been found to be a primary source of false lesion classifications. Therefore, an imaging protocol and reconstruction methods are developed to generate "flow images" which depict both coherent (vascular) and incoherent (CSF) flow. An automatic technique is designed for the removal of extra-meningeal tissues, since these are known to be sources of false lesion classifications. A retrospective, three-dimensional (3D) registration algorithm is implemented to correct for patient movement which may have occurred between AFFIRMATIVE and flow imaging scans. Following application of these pre-processing steps, images are segmented into white matter, gray matter, cerebrospinal fluid, and MS lesions based on AFFIRMATIVE and flow images using an automatic algorithm. All algorithms are seamlessly integrated into a single MR image analysis software package. Lesion quantitation has been performed on images from 15 patient volunteers. The total processing time is less than two hours per patient on a SPARCstation 20. The automated nature of this approach should provide an objective means of monitoring the progression, stabilization, and/or regression of MS lesions in large-scale, multi-center clinical trials. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetic resonance imaging, with its exquisite soft tissue contrast, is an ideal modality for investigating spinal cord pathology. While conventional MRI techniques are very sensitive for spinal cord pathology, their specificity is somewhat limited. Diffusion MRI is an advanced technique which is a very sensitive and specific indicator of the integrity of white matter tracts. Diffusion imaging has been shown to detect early ischemic changes in white matter, while conventional imaging demonstrates no change. By acquiring the complete apparent diffusion tensor (ADT), tissue diffusion properties can be expressed in terms of quantitative and rotationally invariant parameters. ^ Systematic study of SCI in vivo requires controlled animal models such as the popular rat model. To date, studies of spinal cord using ADT imaging have been performed exclusively in fixed, excised spinal cords, introducing inevitable artifacts and losing the benefits of MRI's noninvasive nature. In vivo imaging reflects the actual in vivo tissue properties, and allows each animal to be imaged at multiple time points, greatly reducing the number of animals required to achieve statistical significance. Because the spinal cord is very small, the available signal-to-noise ratio (SNR) is very low. Prior spin-echo based ADT studies of rat spinal cord have relied on high magnetic field strengths and long imaging times—on the order of 10 hours—for adequate SNR. Such long imaging times are incompatible with in vivo imaging, and are not relevant for imaging the early phases following SCI. Echo planar imaging (EPI) is one of the fastest imaging methods, and is popular for diffusion imaging. However, EPI further lowers the image SNR, and is very sensitive to small imperfections in the magnetic field, such as those introduced by the bony spine. Additionally, The small field-of-view (FOV) needed for spinal cord imaging requires large imaging gradients which generate EPI artifacts. The addition of diffusion gradients introduces yet further artifacts. ^ This work develops a method for rapid EPI-based in vivo diffusion imaging of rat spinal cord. The method involves improving the SNR using an implantable coil; reducing magnetic field inhomogeneities by means of an autoshim, and correcting EPI artifacts by post-processing. New EPI artifacts due to diffusion gradients described, and post-processing correction techniques are developed. ^ These techniques were used to obtain rotationally invariant diffusion parameters from 9 animals in vivo, and were validated using the gold-standard, but slow, spinecho based diffusion sequence. These are the first reported measurements of the ADT in spinal cord in vivo . ^ Many of the techniques described are equally applicable toward imaging of human spinal cord. We anticipate that these techniques will aid in evaluating and optimizing potential therapies, and will lead to improved patient care. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Limited literature regarding parameter estimation of dynamic systems has been identified as the central-most reason for not having parametric bounds in chaotic time series. However, literature suggests that a chaotic system displays a sensitive dependence on initial conditions, and our study reveals that the behavior of chaotic system: is also sensitive to changes in parameter values. Therefore, parameter estimation technique could make it possible to establish parametric bounds on a nonlinear dynamic system underlying a given time series, which in turn can improve predictability. By extracting the relationship between parametric bounds and predictability, we implemented chaos-based models for improving prediction in time series. ^ This study describes work done to establish bounds on a set of unknown parameters. Our research results reveal that by establishing parametric bounds, it is possible to improve the predictability of any time series, although the dynamics or the mathematical model of that series is not known apriori. In our attempt to improve the predictability of various time series, we have established the bounds for a set of unknown parameters. These are: (i) the embedding dimension to unfold a set of observation in the phase space, (ii) the time delay to use for a series, (iii) the number of neighborhood points to use for avoiding detection of false neighborhood and, (iv) the local polynomial to build numerical interpolation functions from one region to another. Using these bounds, we are able to get better predictability in chaotic time series than previously reported. In addition, the developments of this dissertation can establish a theoretical framework to investigate predictability in time series from the system-dynamics point of view. ^ In closing, our procedure significantly reduces the computer resource usage, as the search method is refined and efficient. Finally, the uniqueness of our method lies in its ability to extract chaotic dynamics inherent in non-linear time series by observing its values. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Finite Difference Time Domain (FDTD) Method and software are applied to obtain diffraction waves from modulated Gaussian plane wave illumination for right angle wedges and Fast Fourier Transform (FFT) is used to get diffraction coefficients in a wideband in the illuminated lit region. Theta and Phi polarization in 3-dimensional, TM and TE polarization in 2-dimensional cases are considered respectively for soft and hard diffraction coefficients. Results using FDTD method of perfect electric conductor (PEC) wedge are compared with asymptotic expressions from Uniform Theory of Diffraction (UTD). Extend the PEC wedges to some homogenous conducting and dielectric building materials for diffraction coefficients that are not available analytically in practical conditions. ^