914 resultados para Engenharia industrial
Resumo:
This study aimed to analyze the increase of yield provided by a software optimization cutting in a pine sawmill, located at southwest region of São Paulo, city of Itapeva. First were measured 10 logs that were processed by conventional sawing system by measuring the volume of products in the process output. Then using a cutting optimization software, that generated cuts diagrams, 10 logs, from 25 to 26 cm diametrical class, were processed by sawing system optimized. For the conventional sawing, the value found to yield was 41.80%, whereas for the unfolding optimized showed the value of 61.79%, resulting in a difference of 19.99%. This study shows that there is room for significant improvement of performance in sawmills sawing with the use of optimization software as the employee at work
Resumo:
Industrial activity is growing at an increasingly rapid accelerated bringing impacts not very consistent with the preservation of the environment, since it uses its resources to meet its countless demands, making the sources begin to become increasingly scarce. Therefore, this paper proposes the use of waste a furniture industry for the production of panels for the interior decoration. Were used to manufacture them, two different types of materials, where such, the Kraft paper is more efficient for the underpinnings of these panels. Regarding the type of glue used, the contact yielded better results. The initial conditions for the development of such a proposal were based on existing laws for solid waste as well as proposals for environmental agencies
Resumo:
The Sanding is a complex process involving many variables that affect the quality of the part produced, working mainly in the timber industry in the production of panels (MDF, MDP, HDF, etc...) and furniture. However, these industries use the sanding process empirically, not optimizing it. The aim of this study was to compare the behavior of sandpaper white aluminum oxide (OA-white) and Black silicon carbide (SiC-black), analyzing variables in the process as: strength, power, emission, vibration, wear particle size of sanding, and its consequences on the surface finish of the workpiece. Made the process of plane grinding samples of Pinus elliottii, processed in parallel to the fibers, which were sanded with sandpaper grain OA white and black 3-SiC abrasive conditions (new, moderately eroded and severely eroded) grain sizes in 3 (80, 100, and 120 mesh). 6 replicates was performed for each condition tested. Each trial was captured output variables of the sanding process: strength, power, emission and vibration. With two stages totaling 108 trials. After the sanded samples, it has the same surface quality by raising the surface roughness Ra. Through experiment, it can be concluded that abrasives OA-white tended to have higher strength, power, emissions and less vibration in the sanding process, compared to the SiC-black. However, surface finish exhibited similar to the particle size of 80 to 100 mesh, worn abrasive conditions. However, the particle size of 120 mesh, obtained by the roughness of sandpaper OA-bank was higher compared to SiC-black to all conditions of sandpaper due to its toughness
Resumo:
The concern of the society with regard to the pollution if becomes each bigger and necessary time. This pollution generates damage for who is in contact, as much in economic terms how much in quality of life. The particulate matter is one of the main polluting the air, being the most harmful to human health, fine particles and ultra fine (below 2.5 μm in diameter). With this, this work had as objective to mensurar the pollution of air for material particulado through samplings in an urban center, in a siderurgical industry, a conventional coal bunker and a forest fire. The equipment used for the sampling of particles had been the DataRam4 (model DR 4000) and the Impactador de Andersen, both developed by company THERMO SCIENTIFIC. The first equipment uses a system of nefelometry and the second uses a gravimetrical system of sampling. During the carried through samplings, it can be observed in some cases the difficulty in the breath, badly be and low visibility that this type of pollutant can cause. In most cases the results were disturbing. In industry, conventional coal bunker and in the forest were measured values high concentration for particles smaller diameters. Peak concentrations issued were: 40,000 μg/m³, 182,000 μg/m³ and 400,000 μg/m³ for the industry, conventional coal bunker and forest, respectively. Already in the urban centre were satisfactory results, always staying within the limit allowed by the rules in force so far in the country
Resumo:
The process of sanding wood is little known and industries use it in a practical way without having studied their best conditions before. There are few studies involving this type of machining. On this basis, this paper studied the effects of varying moisture content of the wood surface quality after the sanding process. It was used a sanding machine with flat horizontal cut parallel to the fibers, using: 02 different species (Pinus elliottii and Corymbia citriodora); 01 sanding abrasive (aluminum oxide) and 03 different particle size abrasives ( P80 , P100 and P120 ) . Initially, the pieces were acclimatized ( 2 ± 7% , 12% and 17% ± 2 ± 2 ) and subsequently passed by the sanding process, and therefore, the surface roughness was analyzed. For each condition, were performed 06 repetitions totaling 54 trials for each species. We analyzed the effects of wood moisture by capturing the power sanding, rougheness, acoustic emission and maximum temperature during the sanding process. The variation of moisture content produced changes in the surface quality of the finished parts, and these changes were more marked in Pinus than Corymbia. During the sanding process of the specimens with 7 % and 12 % humidity, there was a lower noise emission, power consumption and heating surface. When checking the roughness of these parts after this process, it was observed that the surface quality of them were superior in the parts sanded containing 17 % moisture
Resumo:
The use of biomass as an energy source has been increasing in Brazil, with emphasis on the use of wood biomass, such as bark, wood chips and sawdust, that after receiving the appropriate treatment can be used in burners for power generation. However, from this burning are emitted fine particles known as particulate matter and a wide range of toxic organic and inorganic components in the form of gases that contribute greatly to air pollution and global warming, affecting human health, the environment and climate. The objective of this project was the quantification of gaseous and particulate, using and evaluating the equipment DR4000 ( Dataram 4 ) sampling of particulates smaller than 2.5μm and EUROTRON ( Ecoline 4000 ) when sampling gaseous pollutants, emitted from the burning of biomass in real time in the firing burner to a chimney attached biomass . We note that there are no specific rules that establish emission limits for particulate matter with diameter less than 2.5μm that are most harmful to human health and the highest concentrations reached about 800000μg/m3, for smaller diameters. It is noticeable the need for sampling of pollutants especially in industries that use biomass to fuel that could be implanted emission control equipment
Resumo:
This work is the production of two types of particle boards reconstructed MDP (Medium Density Particleboard), the first with the addition, in the inner layer of particles of impregnated paper, the ratios of 0%, 1%, 5% and 20 %. In the second type of panel MDP was inserted with blades of bamboo species Dendrocalumus giganteus as coatings and structural reinforcement. The MDP panel, used as a basis for both cases has the composition of three layers, two external particles with smaller particle size and an inner layer composed of particles of larger particle sizes. Assays were performed based on physical and mechanical NBR 14.810/2006 for the determination of the board density, thickness swelling, water absorption, moisture content, bending, tension parallel and perpendicular, and testing of particle sizes of the particles did not exists in standard references. The results were analyzed and compared the results of the commercial boards made from 100% eucalyptus, based on the limits specified by the ABNT NBR 14.810/2006. The values of the tests showed similar results indicating normative specifications in a positive way, the possibility of production of MDP with the use of waste paper impregnated. As for the panel with bamboo blades, the tests showed a mechanical performance far superior to MDP market, explaining the study and possible implementation of the bamboo for use where the MDP will suffer greater mechanical stress, such as doors, tops and benches tables
Resumo:
In the last years, the use of industrialized systems of lattice structures of wood as an alternative in the construction processes, is becoming more popular in Brazil, mainly for their commitment to the environment.The industrialized system of wooden lattice structures consists in a production of lattice structures, composed of pieces of wood where their mechanical connections are made with the sheet multi-toothed connectors (CDE).Among the many challenges to make this system competitive, the whole system of the connections between the pieces of wood not only must show functionality, but also speed, strength, versatility and economy. Referenced at Brazilian Standard for Wood Structures (NBR 7190/1997 - Project of timber structures) the sheet multi-toothed connectors, are analyzed using three test methods: tensile strength parallel to grain, tensile strength normal to the fibers and shear strength, all of them in two positions, αCH0=0o e αCH0=90o to four types of wood: Angelim (Vatairea heteroptera Ducke); Red-Angico (Parapiptadenia rigida (Benth) Brenae); Garapa (Apuleia leiocarpa (Vog.) Macbr) and Jatoba (Hymenaea stilbocarpa Hayne), belonging to the Leguminosae family and founded in several regions of Brazil.The purpose of this manuscript consists to analyze the mechanical connections with the sheet multi-toothed connectors through tests from NBR7190/1997
Resumo:
It is clear today the ever-accelerating search for new fuels that will eventually replace those that will survive in our society, which are fossil fuels. For this reason, a fuel used since the dawn of humanity and much studied since then, considered the generator of clean, renewable energy, can earn more and more space in the power generation sector, which is biomass. We performed two experiments with two different types of biomass, one from the Amazon rainforest and other pine and eucalyptus as waste from the sawmill UNESP Itapeva. In the first experiment, conducted at the Laboratory of Combustion and Propulsion INPE Cachoeira Paulista were conducted three tests in a chimney with a fan creating forced ventilation, where the biomass was burned and deposited on a support beneath the hood. In the second experiment was conducted to analyze the emission of particulate matter using biomass (waste) from the sawmill on the campus of UNESP experimental Itapeva the burning of it in a burner for heating water for a wood oven. In these experiments we used a particle called DATARAM4 sampler that is capable of sampling both outdoors and inside of pipelines, which is the focus of this work. With this equipment it was possible to measure the concentration of particulate matter in all the firings as above, and compare them to levels acceptable in the current law, always trying to analyze the so-called fine particles, which are those with diameters less than 2.5 μm. Using data obtained from the equipment was also possible to evaluate the diametral distribution of particulate matter in question, and verify which phases of the flares in the concentration and the diameters of the particles are the most critical. In this work we concluded that in all firings conducted concentrations of particulate matter were higher than that allowed by the law, and the diameters were found that are more harmful to human health
Resumo:
Nowadays, bamboo is being studied because of their strength properties according with their specific mass and speed of growth, which makes it an important alternative as a new resource that will help reduce pressure on forests and helpping them favoring the minimization of uncontrolled deforestation in many regions of Brazil. This study aimed, in general, to analyze physical and mechanical properties of the material with the divulgation of its potential for industrial application. To do so, in this research were determined in relation to the physical properties, moisture content, dimensional stability and the apparent densities and the mechanics and basic, just a tension parallel to grain, in order to observe the interference of various kinds of treatments (chemical, thermal and natural) on the strength and modulus of elasticity in this request. The species used was the Guadua angustifolia, a species native of Brazil. All tests were performed at Universidade Estadual Paulista - Campus Experimental Itapeva in the laboratory of Materials Properties. The methodology used for testing of moisture, density and tension parallel to grain were based on NBR 7190/1997 for the wood, and dimensional stability tests were based on much the same as in COPANT 462/1972 (South American) . The preservative treatments conducted followed the recommendation of each manufacturer. The values obtained in tests of physical properties were satisfactory especially with respect to density and dimensional stability analyzed by the coefficient of anisotropy, showed that, compared to wood, excellent quality for the shrinkage test, obtaining a coefficient of 1.2. With respect to parallel tensile tests to fibre results showed, in most cases, that test specimens with the presence of us have lower values of resistance and modulus of elasticity when compared with those without us. In the treatment of thermal-treatment there was an apparent treatment there was an apparent increase in...
Resumo:
The research aimed to produce sheets of particles with waste processing of Eucalyptus sp bonded with urea-formaldehyde and evaluate the effect of pressure variation in the quality of the boards produced. To do so, the Boards made were divided into two treatments depending on the pressing pressure of 30 to 40 kgf / cm². Once pressings, climatized, the particleboards have been sectioned in test samples, and underwent physical-mechanical tests for determining density, swelling and water absorption, modulus of rupture and elasticity in static bending and internal linking. The particleboards pressed at 40 kgf / cm ² showed the best results
Resumo:
Due to the rapid development of some species such as pine and eucalyptus and a growing demand for raw materials, timber, there was a need for detailed studies to better use and higher quality in products derived from wood. In order to contribute to to better utilization of wood ,this study aims to analyze the quality of the wood surface after machining Corymbia citrodora around, with varying feed rates (40, 70, 100 mm/mim), shear rate (1.88, 2.19, 2.51 m/s) and with the use of inserts for turning new and used (cemented carbide). 18 were used bodies and each body was made three different assays for each test were a total of 54 tests three replicates. This study will also addres the analysis of power consumption for each of the tests. With the results obtained through experiments, including the surface roughness of parts and power consumption for each test, we try to evaluate the power consumption in machining with the variations in cutting speed and feed, with two tools carbide
Resumo:
The objective of the present work was to evaluate Pinus’ glued laminated timber (glulam) beams and steel reinforced glulam beams, using PU mono-component adhesive in lamination step and epoxy adhesive to bond steel bars. The mechanical performance was verified through bending test, and the adopted method based on homogenized section, to considerate the differences between wood and steel mechanical properties. The homogenization section method proved itself effective in obtaining the stiffness of the parts in MLCA. The stiffness of reinforced beams increased 91% in comparison with glulam beams, differing only 5.5 % from value of stiffness calculated
Resumo:
The deslignification with oxygen, also denominated pre-O2, consists in a whitening stage, which consists of accomplishing an oxidation of the lignin, and remove it with the alkali, providing a larger earnings in the bleaching of the pulp. The pre-O2 is a process already very established, where a significant part of the cellulose of whitened short fiber produced nowadays suffers deslignification for this method. The conditions of work of this stage contemplate directly in the results of the deslignification level, in the physical, optical and mechanics properties of the pulp, and consequently of the paper, because this is important to know their effects fully. The main variables related to the control of this process are respectively: pressure and oxygen load, alkaline load, consistence, time and temperature, being this last variable was the study focus in this work. The objective of the work was to analyze the effect of the variation of the temperature in the oxygen whitening along every bleaching process of the pulp, refine and in the optical, physics and mechanics properties of the paper. The development of the work was based in four temperature levels (90, 95, 100 and 105°C) combined to two whitening sequences (OD0(E+P)D1P and OAHTD0(E+P)D1P). The results obtained in the oxygen deslignification stage indicated that the elevation of the temperature contemplated in increases of the whiteness, deslignification efficiency and in the viscosity loss allied to the reduction of the selectivity of the process. In the remaining of the whitening, the sequence that included the acid hydrolysis presented values slightly inferior of whiteness, kappa number, viscosity and yield in relation to the other sequence when compared with the samples of same temperatures. Already the physical tests showed that the sequence with acid stage amplifies the values of capillary... (Complete abstract click electronic access below)
Resumo:
The growth of urban population associated with the shortage of supply of public infrastructure such as hospitals, kindergartens, schools, among others, has reinforced the need to develop alternative methods that simplify the construction processes and allows for a reduction in these costs works. The conventional processes have increasingly been shown ineffective to solve the problem of demand for different types of urban and rural buildings. Given this fact, industrial construction processes can gain space and have proven to be highly interesting to solve the above problems, in particular, considering the cost-effective and time. Therefore, this study aimed to determine the influence of moisture on the strength of metal plate connections connectors (printed plate with teeth). For the sizing of the links between structural lumber using metal connectors with teeth prints; controlled process variables (drying of the wood and the different moisture contents), and finally found results and compare them with different literatures order to obtain a qualitative efficiency of the process. Some specimens had very low expectations, can be explained by the presence of bone marrow, and pre-existing cracks. Thus, the results were discarded for further analysis and more accurate results