886 resultados para Energy source
Resumo:
Gemstone Team HEAT (Human Energy Acquisition Technology)
Resumo:
In an age of depleting oil reserves and increasing energy demand, humanity faces a stalemate between environmentalism and politics, where crude oil is traded at record highs yet the spotlight on being ‘green’ and sustainable is stronger than ever. A key theme on today’s political agenda is energy independence from foreign nations, and the United Kingdom is bracing itself for nuclear renaissance which is hoped will feed the rapacious centralised system that the UK is structured upon. But what if this centralised system was dissembled, and in its place stood dozens of cities which grow and monopolise from their own energy? Rather than one dominant network, would a series of autonomous city-based energy systems not offer a mutually profitable alternative? Bio-Port is a utopian vision of a ‘Free Energy City’ set in Liverpool, where the old dockyards, redundant space, and the Mersey Estuary have been transformed into bio-productive algae farms. Bio-Port Free Energy City is a utopian ideal, where energy is superfluous; in fact so abundant that meters are obsolete. The city functions as an energy generator and thrives from its own product with minimal impact upon the planet it inhabits. Algaculture is the fundamental energy source, where a matrix of algae reactors swamp the abandoned dockyards; which themselves have been further expanded and reclaimed from the River Mersey. Each year, the algae farm is capable of producing over 200 million gallons of bio-fuel, which in-turn can produce enough electricity to power almost 2 million homes. The metabolism of Free-Energy City is circular and holistic, where the waste products of one process are simply the inputs of a new one. Livestock farming – once traditionally a high-carbon countryside exercise has become urbanised. Cattle are located alongside the algae matrix, and waste gases emitted by farmyards and livestock are largely sequestered by algal blooms or anaerobically converted to natural gas. Bio-Port Free Energy City mitigates the imbalances between ecology and urbanity, and exemplifies an environment where nature and the human machine can function productively and in harmony with one another. According to James Lovelock, our population has grown in number to the point where our presence is perceptibly disabling the planet, but in order to reverse the effects of our humanist flaws, it is vital that new eco-urban utopias are realised.
Resumo:
Throughout recent years, there has been an increase in the population size, as well as a fast economic growth, which has led to an increase of the energy demand that comes mainly from fossil fuels. In order to reduce the ecological footprint, governments have implemented sustainable measures and it is expected that by 2035 the energy produced from renewable energy sources, such as wind and solar would be responsible for one-third of the energy produced globally. However, since the energy produced from renewable sources is governed by the availability of the respective primary energy source there is often a mismatch between production and demand, which could be solved by adding flexibility on the demand side through demand response (DR). DR programs influence the end-user electricity usage by changing its cost along the time. Under this scenario the user needs to estimate the energy demand and on-site production in advance to plan its energy demand according to the energy price. This work focuses on the development of an agent-based electrical simulator, capable of: (a) estimating the energy demand and on-site generation with a 1-min time resolution for a 24-h period, (b) calculating the energy price for a given scenario, (c) making suggestions on how to maximize the usage of renewable energy produced on-site and to lower the electricity costs by rescheduling the use of certain appliances. The results show that this simulator allows reducing the energy bill by 11% and almost doubling the use of renewable energy produced on-site.
Resumo:
Rampant increases in oil prices and detrimental effects of fossil fuels on the environment have been the main impetus for the development of environmentally friendly and sustainable energy sources. Amongst the many possibilities, microalgae have been proposed as a new alternative energy source to fossil fuels, as their growth is both sustainable and ecologically safe. By definition, microalgae are unicellular photosynthetic microorganisms containing chlorophyll a. These organisms are capable of producing large quantities of oils, surpassing that of traditional oil-seed crops, which can be transformed, through chemical processes, into biofuels such as biodiesel or bio-gasoline. Thus, recent research has gone into discovering high lipid producing algal strains, optimising growth media for increased lipid production and developing metabolic engineering to make microalgae a source of biofuel that is competitive to more traditional sources of biofuel and even to fossil fuel. In this context, the research reported here focused on using a mixotrophic growth mode as a way to increase lipid production for certain strains of microalgae. In addition, nitrogen starvation combined with mixotrophy was studied to analyse its effects on lipid production. Mixotrophy is the parallel usage of two trophic modes, in our case photoautotrophy and heterotrophy. Consequently, 12 algal strains were screened for mixotrophic growth, using glycerol as a carbon source. Glycerol is a waste product of the current biodiesel industry; it is a cheap and abundant carbon source present in many metabolic pathways. From this initial screening, several strains were chosen for subsequent experiments involving nitrogen starvation. Nitrogen starvation has been shown to induce lipid accumulation. The results obtained show that a mixotrophic growth mode, using glycerol as a carbon source, enhances lipid production for certain strains. Moreover, lipid enhancement was shown for nitrogen starvation combined with mixotrophic growth mode. This was dependant on time spent under nitrogen starvation and on initial concentrations of the nitrogen source.
Resumo:
The theme of the thesis is centred around one important aspect of wireless sensor networks; the energy-efficiency.The limited energy source of the sensor nodes calls for design of energy-efficient routing protocols. The schemes for protocol design should try to minimize the number of communications among the nodes to save energy. Cluster based techniques were found energy-efficient. In this method clusters are formed and data from different nodes are collected under a cluster head belonging to each clusters and then forwarded it to the base station.Appropriate cluster head selection process and generation of desirable distribution of the clusters can reduce energy consumption of the network and prolong the network lifetime. In this work two such schemes were developed for static wireless sensor networks.In the first scheme, the energy wastage due to cluster rebuilding incorporating all the nodes were addressed. A tree based scheme is presented to alleviate this problem by rebuilding only sub clusters of the network. An analytical model of energy consumption of proposed scheme is developed and the scheme is compared with existing cluster based scheme. The simulation study proved the energy savings observed.The second scheme concentrated to build load-balanced energy efficient clusters to prolong the lifetime of the network. A voting based approach to utilise the neighbor node information in the cluster head selection process is proposed. The number of nodes joining a cluster is restricted to have equal sized optimum clusters. Multi-hop communication among the cluster heads is also introduced to reduce the energy consumption. The simulation study has shown that the scheme results in balanced clusters and the network achieves reduction in energy consumption.The main conclusion from the study was the routing scheme should pay attention on successful data delivery from node to base station in addition to the energy-efficiency. The cluster based protocols are extended from static scenario to mobile scenario by various authors. None of the proposals addresses cluster head election appropriately in view of mobility. An elegant scheme for electing cluster heads is presented to meet the challenge of handling cluster durability when all the nodes in the network are moving. The scheme has been simulated and compared with a similar approach.The proliferation of sensor networks enables users with large set of sensor information to utilise them in various applications. The sensor network programming is inherently difficult due to various reasons. There must be an elegant way to collect the data gathered by sensor networks with out worrying about the underlying structure of the network. The final work presented addresses a way to collect data from a sensor network and present it to the users in a flexible way.A service oriented architecture based application is built and data collection task is presented as a web service. This will enable composition of sensor data from different sensor networks to build interesting applications. The main objective of the thesis was to design energy-efficient routing schemes for both static as well as mobile sensor networks. A progressive approach was followed to achieve this goal.
Resumo:
Sources and sinks of gravitational potential energy (GPE) play a rate-limiting role in the large scale ocean circulation. A key source is turbulent diapycnal mixing, whereby irre- versible mixing across isoneutral surfaces is enhanced by turbulent straining of these surfaces. This has motivated international observational efforts to map diapycnal mixing in the global ocean. However, in order to accurately relate the GPE supplied to the large scale circulation by diapycnal mixing to the mixing energy source, it is first necessary to determine the ratio, ξ , of the GPE generation rate to the available potential energy dissipation rate associated with turbulent mixing. Here, the link between GPE and hydro- static pressure is used to derive the GPE budget for a com- pressible ocean with a nonlinear equation of state. The role of diapycnal mixing is isolated and from this a global cli- matological distribution of ξ is calculated. It is shown that, for a given source of mixing energy, typically three times as much GPE is generated if the mixing takes place in bottom waters rather than in the pycnocline. This is due to GPE destruction by cabbelling in the pycnocline, as opposed to thermobaric enhancement of GPE generation by diapycnal mixing in the deep ocean.
Resumo:
In this paper, a power management strategy (PMS) has been developed for the control of energy storage in a system subjected to loads of random duration. The PMS minimises the costs associated with the energy consumption of specific systems powered by a primary energy source and equipped with energy storage, under the assumption that the statistical distribution of load durations is known. By including the variability of the load in the cost function, it was possible to define the optimality criteria for the power flow of the storage. Numerical calculations have been performed obtaining the control strategies associated with the global minimum in energy costs, for a wide range of initial conditions of the system. The results of the calculations have been tested on a MATLAB/Simulink model of a rubber tyre gantry (RTG) crane equipped with a flywheel energy storage system (FESS) and subjected to a test cycle, which corresponds to the real operation of a crane in the Port of Felixstowe. The results of the model show increased energy savings and reduced peak power demand with respect to existing control strategies, indicating considerable potential savings for port operators in terms of energy and maintenance costs.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Petroleum is the main energy source utilized in the world, but its availability is limited and the search for new renewable energy sources is of major interest. Biofuels, such as ethanol and biodiesel, are among the most promising sources for the substitution of fossil fuels. Biodiesel can replace petroleum diesel, as it is produced from animal fats and vegetable oils, which generate about 10% (w/w) glycerol as the main by-product. The excess glycerol generated may become an environmental problem. since it cannot be disposed of in the environment. One of the possible applications is its use as carbon and energy source for microbial growth in industrial microbiology. Glycerol bioconversion in valuable chemicals, such as 1,3-propanediol, dihydroxyacetone, ethanol, succinate etc. is discussed in this review article. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Includes bibliography
Resumo:
Includes bibliography
Resumo:
Incluye Bibliografía
Resumo:
This paper presents the analysis of some usual MPPT (Maximum Power Point Tracking) strategies intended for small wind energy conversion (up to 1kW) based on permanent magnet synchronous generators (PMSG), considering the stand-alone application for a novel buck-boost integrated inverter. Each MPPT method is analytically introduced and then it is simulated using MatLab/Simulink considering standard conditions of wind and also commercially available turbines and generators. The extracted power in each case is compared with the maximum available power, so the tracking factor is calculated for each method. Thus, the focus is on the application to improve the efficiency of stand-alone wind energy conversion systems (WECS) with battery chargers and AC load supplied by inverter. Therefore, for this purpose a novel single phase buck-boost integrated inverter is introduced. Finally, the main experimental results for the introduced inverter are presented. © 2011 IEEE.
Resumo:
Nine ruminally cannulated cows fed different energy sources were used to evaluate an avianderived polyclonal antibody preparation against specific ruminal bacteria and monensin on microbial community diversity. The experimental design was three Latin squares 3 x 3 distinguished by the main energy source in the diet [dry-ground corn grain, high moisture corn silage or citrus pulp]. Inside each Latin square, animals received one of the feed additives per period [control, monensin or polyclonal antibody preparation]. Each period lasted 21 days where 20 were used for treatments adaptation and the last one for sampling collection. Microbial diversity was evaluated by protozoa counts and denaturing gradient gel electrophoresis. Polyclonal antibodies plus citrus pulp (CiPu) addition in the diet resulted in an increase of relative counting of Isotricha protozoa that indicates a possible effect on this ruminal ciliate population. In general lines, in the present experiment, it was not possible to assign that there was a pattern in the structures of amplification of Bacteria and Archaea communities of the ruminal content. Oral passive immunization is a technology that arises as an effective alternative for feed additive production. Further research is still necessary to better understand its mechanisms of action.