990 resultados para Energy scenario
Resumo:
Most of small islands around the world today, are dependent on imported fossil fuels for the majority of their energy needs especially for transport activities and electricity production. The use of locally renewable energy resources and the implementation of energy efficiency measures could make a significant contribution to their economic development by reducing fossil fuel imports. An electrification of vehicles has been suggested as a way to both reduce pollutant emissions and increase security of supply of the transportation sector by reducing the dependence on oil products imports and facilitate the accommodation of renewable electricity generation, such as wind and, in the case of volcanic islands like Sao Miguel (Azores) of the geothermal energy whose penetration has been limited by the valley electricity consumption level. In this research, three scenarios of EV penetration were studied and it was verified that, for a 15% LD fleet replacement by EVs with 90% of all energy needs occurring during the night, the accommodation of 10 MW of new geothermal capacity becomes viable. Under this scenario, reductions of 8% in electricity costs, 14% in energy, 23% in fossil fuels use and CO2 emissions for the transportation and electricity production sectors could be expected.
Resumo:
The massification of electric vehicles (EVs) can have a significant impact on the power system, requiring a new approach for the energy resource management. The energy resource management has the objective to obtain the optimal scheduling of the available resources considering distributed generators, storage units, demand response and EVs. The large number of resources causes more complexity in the energy resource management, taking several hours to reach the optimal solution which requires a quick solution for the next day. Therefore, it is necessary to use adequate optimization techniques to determine the best solution in a reasonable amount of time. This paper presents a hybrid artificial intelligence technique to solve a complex energy resource management problem with a large number of resources, including EVs, connected to the electric network. The hybrid approach combines simulated annealing (SA) and ant colony optimization (ACO) techniques. The case study concerns different EVs penetration levels. Comparisons with a previous SA approach and a deterministic technique are also presented. For 2000 EVs scenario, the proposed hybrid approach found a solution better than the previous SA version, resulting in a cost reduction of 1.94%. For this scenario, the proposed approach is approximately 94 times faster than the deterministic approach.
Resumo:
Thesis to obtain the Master Degree in Electronics and Telecommunications Engineering
Resumo:
The aggregation and management of Distributed Energy Resources (DERs) by an Virtual Power Players (VPP) is an important task in a smart grid context. The Energy Resource Management (ERM) of theses DERs can become a hard and complex optimization problem. The large integration of several DERs, including Electric Vehicles (EVs), may lead to a scenario in which the VPP needs several hours to have a solution for the ERM problem. This is the reason why it is necessary to use metaheuristic methodologies to come up with a good solution with a reasonable amount of time. The presented paper proposes a Simulated Annealing (SA) approach to determine the ERM considering an intensive use of DERs, mainly EVs. In this paper, the possibility to apply Demand Response (DR) programs to the EVs is considered. Moreover, a trip reduce DR program is implemented. The SA methodology is tested on a 32-bus distribution network with 2000 EVs, and the SA results are compared with a deterministic technique and particle swarm optimization results.
Resumo:
This paper presents a modified Particle Swarm Optimization (PSO) methodology to solve the problem of energy resources management with high penetration of distributed generation and Electric Vehicles (EVs) with gridable capability (V2G). The objective of the day-ahead scheduling problem in this work is to minimize operation costs, namely energy costs, regarding the management of these resources in the smart grid context. The modifications applied to the PSO aimed to improve its adequacy to solve the mentioned problem. The proposed Application Specific Modified Particle Swarm Optimization (ASMPSO) includes an intelligent mechanism to adjust velocity limits during the search process, as well as self-parameterization of PSO parameters making it more user-independent. It presents better robustness and convergence characteristics compared with the tested PSO variants as well as better constraint handling. This enables its use for addressing real world large-scale problems in much shorter times than the deterministic methods, providing system operators with adequate decision support and achieving efficient resource scheduling, even when a significant number of alternative scenarios should be considered. The paper includes two realistic case studies with different penetration of gridable vehicles (1000 and 2000). The proposed methodology is about 2600 times faster than Mixed-Integer Non-Linear Programming (MINLP) reference technique, reducing the time required from 25 h to 36 s for the scenario with 2000 vehicles, with about one percent of difference in the objective function cost value.
Resumo:
In the smart grids context, distributed energy resources management plays an important role in the power systems’ operation. Battery electric vehicles and plug-in hybrid electric vehicles should be important resources in the future distribution networks operation. Therefore, it is important to develop adequate methodologies to schedule the electric vehicles’ charge and discharge processes, avoiding network congestions and providing ancillary services. This paper proposes the participation of plug-in hybrid electric vehicles in fuel shifting demand response programs. Two services are proposed, namely the fuel shifting and the fuel discharging. The fuel shifting program consists in replacing the electric energy by fossil fuels in plug-in hybrid electric vehicles daily trips, and the fuel discharge program consists in use of their internal combustion engine to generate electricity injecting into the network. These programs are included in an energy resources management algorithm which integrates the management of other resources. The paper presents a case study considering a 37-bus distribution network with 25 distributed generators, 1908 consumers, and 2430 plug-in vehicles. Two scenarios are tested, namely a scenario with high photovoltaic generation, and a scenario without photovoltaic generation. A sensitivity analyses is performed in order to evaluate when each energy resource is required.
Resumo:
Recent and future changes in power systems, mainly in the smart grid operation context, are related to a high complexity of power networks operation. This leads to more complex communications and to higher network elements monitoring and control levels, both from network’s and consumers’ standpoint. The present work focuses on a real scenario of the LASIE laboratory, located at the Polytechnic of Porto. Laboratory systems are managed by the SCADA House Intelligent Management (SHIM), already developed by the authors based on a SCADA system. The SHIM capacities have been recently improved by including real-time simulation from Opal RT. This makes possible the integration of Matlab®/Simulink® real-time simulation models. The main goal of the present paper is to compare the advantages of the resulting improved system, while managing the energy consumption of a domestic consumer.
Resumo:
An intensive use of dispersed energy resources is expected for future power systems, including distributed generation, especially based on renewable sources, and electric vehicles. The system operation methods and tool must be adapted to the increased complexity, especially the optimal resource scheduling problem. Therefore, the use of metaheuristics is required to obtain good solutions in a reasonable amount of time. This paper proposes two new heuristics, called naive electric vehicles charge and discharge allocation and generation tournament based on cost, developed to obtain an initial solution to be used in the energy resource scheduling methodology based on simulated annealing previously developed by the authors. The case study considers two scenarios with 1000 and 2000 electric vehicles connected in a distribution network. The proposed heuristics are compared with a deterministic approach and presenting a very small error concerning the objective function with a low execution time for the scenario with 2000 vehicles.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia do Ambiente, Perfil de Gestão e Sistemas Ambientais
Resumo:
Dissertação para obtenção do Grau de Doutor em Ambiente
Resumo:
Throughout recent years, there has been an increase in the population size, as well as a fast economic growth, which has led to an increase of the energy demand that comes mainly from fossil fuels. In order to reduce the ecological footprint, governments have implemented sustainable measures and it is expected that by 2035 the energy produced from renewable energy sources, such as wind and solar would be responsible for one-third of the energy produced globally. However, since the energy produced from renewable sources is governed by the availability of the respective primary energy source there is often a mismatch between production and demand, which could be solved by adding flexibility on the demand side through demand response (DR). DR programs influence the end-user electricity usage by changing its cost along the time. Under this scenario the user needs to estimate the energy demand and on-site production in advance to plan its energy demand according to the energy price. This work focuses on the development of an agent-based electrical simulator, capable of: (a) estimating the energy demand and on-site generation with a 1-min time resolution for a 24-h period, (b) calculating the energy price for a given scenario, (c) making suggestions on how to maximize the usage of renewable energy produced on-site and to lower the electricity costs by rescheduling the use of certain appliances. The results show that this simulator allows reducing the energy bill by 11% and almost doubling the use of renewable energy produced on-site.
Resumo:
Construction sector is one of the major responsible for energy consumption and carbon emissions and renovation of existing buildings plays an important role in the actions to mitigate climate changes. Present work is based on the methodology developed in IEA Annex 56, allowing identifying cost optimal and cost effective renovation scenarios improving the energy performance. The analysed case study is a residential neighbourhood of the municipality of Gaia in Portugal. The analysis compares a reference renovation scenario (without improving the energy performance of the building) with a series of alternative renovation scenarios, including the one that is being implemented.
Resumo:
The disintegration of the USSR brought the emergence of a new geo-energy space in Central Asia. This space arose in the context of a global energy transition, which began in the late 1970s. Therefore, this new space in a changing energy world requires both new conceptual frameworks of analysis and the creation of new analytical tools. Taking into account this fact, our paper attempts to apply the theoretical framework of the Global Commodity Chain (GCC) to the case of natural resources in Central Asia. The aim of the paper is to check if there could be any Central Asia’s geo-energy space, assuming that this space would exist if natural resources were managed with regional criteria. The paper is divided into four sections. First an introduction that describes the new global energy context within natural resources of Central Asia would be integrated. Secondly, the paper justifies why the GCC methodology is suitable for the study of the value chains of energy products. Thirdly, we build up three cases studies (oil and uranium from Kazakhstan and gas from Turkmenistan) which reveal a high degree of uncertainty over the direction these chains will take. Finally, we present the conclusions of this study that state that the most plausible scenario would be the integration of energy resources of these countries in GCC where the core of the decision-making process will be far away from the region of Central Asia. Key words: Energy transition, geo-energy space, Global Commodity Chains, Central Asia
Resumo:
We provide estimates of the costs associated with inducing substantial conversion of land from production of traditional crops to switchgrass. Higher traditional crop prices due to increased demand for corn from the ethanol industry has increased the relative advantage that row crops have over switchgrass. Results indicate that farmers will convert to switchgrass production only with significant conversion subsidies. To examine potential environmental consequences of conversion, we investigate three stylized landscape usage scenarios, one with an entire conversion of a watershed to switchgrass production, a second with the entire watershed planted to continuous corn under a 50% removal rate of the biomass, and a third scenario that places switchgrass on the most erodible land in the watershed and places continuous corn on the least erodible. For each of these illustrative scenarios, the watershed-scale Soil and Water Assessment Tool (SWAT) hydrological model (Arnold et al., 1998; Arnold and Forher, 2005) is used to evaluate the effect of these landscape uses on sediment and nutrient loadings in the Maquoketa Watershed in eastern Iowa.
Resumo:
The possible associations between the microquasars LS 5039 and LS I +61 303 and the EGRET sources 3EG J1824-1514 and 3EG J0241+6103 suggest that microquasars could also be sources of high-energy gamma-rays. In this work, we present a detailed numerical inverse Compton (IC) model, based on a microquasar scenario, that reproduces the high-energy gamma-ray spectra and variability observed by EGRET for the mentioned sources. Our model considers a population of relativistic electrons entrained in a cylindrical inhomogeneous jet that interact through IC scattering with both the radiation and the magnetic fields.