863 resultados para Energy Efficient Routing Protocols
Resumo:
The pumping processes requiring wide range of flow are often equipped with parallelconnected centrifugal pumps. In parallel pumping systems, the use of variable speed control allows that the required output for the process can be delivered with a varying number of operated pump units and selected rotational speed references. However, the optimization of the parallel-connected rotational speed controlled pump units often requires adaptive modelling of both parallel pump characteristics and the surrounding system in varying operation conditions. The available information required for the system modelling in typical parallel pumping applications such as waste water treatment and various cooling and water delivery pumping tasks can be limited, and the lack of real-time operation point monitoring often sets limits for accurate energy efficiency optimization. Hence, alternatives for easily implementable control strategies which can be adopted with minimum system data are necessary. This doctoral thesis concentrates on the methods that allow the energy efficient use of variable speed controlled parallel pumps in system scenarios in which the parallel pump units consist of a centrifugal pump, an electric motor, and a frequency converter. Firstly, the suitable operation conditions for variable speed controlled parallel pumps are studied. Secondly, methods for determining the output of each parallel pump unit using characteristic curve-based operation point estimation with frequency converter are discussed. Thirdly, the implementation of the control strategy based on real-time pump operation point estimation and sub-optimization of each parallel pump unit is studied. The findings of the thesis support the idea that the energy efficiency of the pumping can be increased without the installation of new, more efficient components in the systems by simply adopting suitable control strategies. An easily implementable and adaptive control strategy for variable speed controlled parallel pumping systems can be created by utilizing the pump operation point estimation available in modern frequency converters. Hence, additional real-time flow metering, start-up measurements, and detailed system model are unnecessary, and the pumping task can be fulfilled by determining a speed reference for each parallel-pump unit which suggests the energy efficient operation of the pumping system.
Resumo:
The energy consumption of IT equipments is becoming an issue of increasing importance. In particular, network equipments such as routers and switches are major contributors to the energy consumption of internet. Therefore it is important to understand how the relationship between input parameters such as bandwidth, number of active ports, traffic-load, hibernation-mode and their impact on energy consumption of a switch. In this paper, the energy consumption of a switch is analyzed in extensive experiments. A fuzzy rule-based model of energy consumption of a switch is proposed based on the result of experiments. The model can be used to predict the energy saving when deploying new switches by controlling the parameters to achieve desired energy consumption and subsequent performance. Furthermore, the model can also be used for further researches on energy saving techniques such as energy-efficient routing protocol, dynamic link shutdown, etc.
Resumo:
Data caching is an attractive solution for reducing bandwidth demands and network latency in mobile ad hoc networks. Deploying caches in mobile nodes can reduce the overall traf c considerably. Cache hits eliminate the need to contact the data source frequently, which avoids additional network overhead. In this paper we propose a data discovery and cache management policy for cooperative caching, which reduces the power usage, caching overhead and delay by reducing the number of control messages flooded into the network .A cache discovery process based on position cordinates of neighboring nodes is developed for this .The stimulstion results gives a promising result based on the metrics of the studies.
Resumo:
One of the major applications of underwater acoustic sensor networks (UWASN) is ocean environment monitoring. Employing data mules is an energy efficient way of data collection from the underwater sensor nodes in such a network. A data mule node such as an autonomous underwater vehicle (AUV) periodically visits the stationary nodes to download data. By conserving the power required for data transmission over long distances to a remote data sink, this approach extends the network life time. In this paper we propose a new MAC protocol to support a single mobile data mule node to collect the data sensed by the sensor nodes in periodic runs through the network. In this approach, the nodes need to perform only short distance, single hop transmission to the data mule. The protocol design discussed in this paper is motivated to support such an application. The proposed protocol is a hybrid protocol, which employs a combination of schedule based access among the stationary nodes along with handshake based access to support mobile data mules. The new protocol, RMAC-M is developed as an extension to the energy efficient MAC protocol R-MAC by extending the slot time of R-MAC to include a contention part for a hand shake based data transfer. The mobile node makes use of a beacon to signal its presence to all the nearby nodes, which can then hand-shake with the mobile node for data transfer. Simulation results show that the new protocol provides efficient support for a mobile data mule node while preserving the advantages of R-MAC such as energy efficiency and fairness.
Resumo:
Wireless sensor networks monitor their surrounding environment for the occurrence of some anticipated phenomenon. Most of the research related to sensor networks considers the static deployment of sensor nodes. Mobility of sensor node can be considered as an extra dimension of complexity, which poses interesting and challenging problems. Node mobility is a very important aspect in the design of effective routing algorithm for mobile wireless networks. In this work we intent to present the impact of different mobility models on the performance of the wireless sensor networks. Routing characteristics of various routing protocols for ad-hoc network were studied considering different mobility models. Performance metrics such as end-to-end delay, throughput and routing load were considered and their variations in the case of mobility models like Freeway, RPGM were studied. This work will be useful to figure out the characteristics of routing protocols depending on the mobility patterns of sensors
Resumo:
This dissertation focuses on the problem of providing mechanisms for routing point to point and multipoint connections in ATM networks. In general the notion of multipoint connection refers to connections that involve a group of users with more than two members. The main objective of this dissertation is to contribute to design efficient routing protocols with alterative routes in fully connected VP-based ATM Networks for call establishment of point to point and multipoint VC connections. An efficient route should be computed during this connection establishment phase.
Resumo:
Greenhouse cladding materials are a major component in the design of energy efficient greenhouses. The optical properties of cladding materials determine a major part of the overall performance of a greenhouse both in terms of the energy balance of the greenhouse and on crop behavior. Various film plastic greenhouse-cladding materials were measured under laboratory conditions using a spectroradiometer equipped with an integrating sphere. Films were measured over a range of angles of incidence and the effect of increasing distance between double films was also measured. PAR transmission remained nearly constant for angles of incidence increased up to 30 degrees but fell rapidly thereafter as the angles of incidence increased up to 90 degrees. Increasing distance between double films did not significantly affect PAR transmission in all films examined. These results are discussed in relation to the design criteria for an energy efficient greenhouse.
Resumo:
This chapter covers the basic concepts of passive building design and its relevant strategies, including passive solar heating, shading, natural ventilation, daylighting and thermal mass. In environments with high seasonal peak temperatures and/or humidity (e.g. cities in temperate regions experiencing the Urban Heat Island effect), wholly passive measures may need to be supplemented with low and zero carbon technologies (LZCs). The chapter also includes three case studies: one residential, one demonstrational and one academic facility (that includes an innovative passive downdraught cooling (PDC) strategy) to illustrate a selection of passive measures.
Resumo:
There is growing pressure on the construction industry to deliver energy efficient, sustainable buildings but there is evidence to suggest that, in practice, designs regularly fail to achieve the anticipated levels of in-use energy consumption. One of the key factors behind this discrepancy is the behavior of the building occupants. This paper explores how insights from experimental psychology could potentially be used to reduce the gap between the predicted and actual energy performance of buildings. It demonstrates why traditional methods to engage with the occupants are not always successful and proposes a model for a more holistic approach to this issue. The paper concludes that achieving energy efficiency in buildings is not solely a technological issue and that the construction industry needs to adopt a more user-centred approach.
Resumo:
In this paper, we develop an energy-efficient resource-allocation scheme with proportional fairness for downlink multiuser orthogonal frequency-division multiplexing (OFDM) systems with distributed antennas. Our aim is to maximize energy efficiency (EE) under the constraints of the overall transmit power of each remote access unit (RAU), proportional fairness data rates, and bit error rates (BERs). Because of the nonconvex nature of the optimization problem, obtaining the optimal solution is extremely computationally complex. Therefore, we develop a low-complexity suboptimal algorithm, which separates subcarrier allocation and power allocation. For the low-complexity algorithm, we first allocate subcarriers by assuming equal power distribution. Then, by exploiting the properties of fractional programming, we transform the nonconvex optimization problem in fractional form into an equivalent optimization problem in subtractive form, which includes a tractable solution. Next, an optimal energy-efficient power-allocation algorithm is developed to maximize EE while maintaining proportional fairness. Through computer simulation, we demonstrate the effectiveness of the proposed low-complexity algorithm and illustrate the fundamental trade off between energy and spectral-efficient transmission designs.