955 resultados para Endurance Performance
Resumo:
OBJECTIVE: To analyze and compare the vertical component of ground reaction forces and isokinetic muscle parameters for plantar flexion and dorsiflexion of the ankle between long-distance runners, triathletes, and nonathletes. METHODS: Seventy-five males with a mean age of 30.26 (±6.5) years were divided into three groups: a triathlete group (n=26), a long-distance runner group (n = 23), and a non-athlete control group. The kinetic parameters were measured during running using a force platform, and the isokinetic parameters were measured using an isokinetic dynamometer. RESULTS: The non-athlete control group and the triathlete group exhibited smaller vertical forces, a greater ground contact time, and a greater application of force during maximum vertical acceleration than the long-distance runner group. The total work (180º/s) was greater in eccentric dorsiflexion and concentric plantar flexion for the non-athlete control group and the triathlete group than the long-distance runner group. The peak torque (60º/s) was greater in eccentric plantar flexion and concentric dorsiflexion for the control group than the athlete groups. CONCLUSIONS: The athlete groups exhibited less muscle strength and resistance than the control group, and the triathletes exhibited less impact and better endurance performance than the runners.
Resumo:
Este estudo verificou o efeito agudo dos exercícios de flexibilidade estática (EFlex) no desempenho de força máxima (FM) e de resistência de força (RF) em membros inferiores e superiores. Treze voluntários participaram do estudo e foram submetidos a testes de FM e RF (70% 1RM) nos exercícios supino e agachamento precedidos ou não de EFlex. O teste T pareado foi utilizado para comparação das médias nas duas condições. Os EFlex diminuíram a FM no agachamento (141,2±34,2 vs 132±34,9kg; p=0,007) e no supino (77,5±21,7 vs 71,7±17,7kg p=0,04). A RF no agachamento não sofreu efeito dos EFlex (16,2±5,7 vs 16,3±6,8 repetições p=0,48), porém, no supino a RF apresentou diminuição significante (11,7±4,8 vs 9,9±5,1 repetições; p=0,008). Portanto, os EFlex reduziram a FM nos membros inferiores e superiores e a RF somente nos membros superiores. Essa diferença na RF estaria relacionada ao volume de exercícios de flexibilidade pelo tamanho do grupo muscular.
Resumo:
This study assessed the knowledge, prevalence, and quantity of caffeine use by athletes competing at the 2005 Ironman Triathlon World Championships. Caffeine-related questionnaires were self-administered to 140 (105 male and 35 female, 40.3 +/- 10.7 y) athletes representing 16 countries. Fifty of these athletes further consented to immediate post-race blood samples for analysis of plasma caffeine and paraxanthine using high-performance liquid chromatography (HPLC). Seventy-two percent of 70 athletes correctly identified caffeine as being an unrestricted substance in triathlon. The majority of athletes [125 (89%)] were planning on using a caffeinated substance immediately prior to or throughout the race. Cola drinks (78%), caffeinated gels (42%), coffee (usually pre-race) (37%), energy drinks (13%), and NoDoz tablets (9%) were the most popular caffeinated choices. Mean standard deviation (and range) post race plasma caffeine and paraxanthine levels were 22.3 +/- 20 mu mol/L (1.7 to 98.4) and 9.4 +/- 6 mu mol/L (1.8 to 28.9), respectively. Seven athletes (14%) finished with plasma caffeine levels >= 40 mu mol/L. Plasma values from elite athletes did not differ from age group competitors. Despite the prevalence of its consumption and the training experience of this athletic group, over one quarter of athletes remained either confused or uninformed about caffeine's legality. Levels of plasma caffeine taken immediately post race indicated that athletes typically finish with quantities of caffeine that have been shown to improve endurance performance (i.e., approximate to 20 mu mol/L or a dose of >= 3 mg/kg body weight).
Resumo:
It has been established that Wingate-based high-intensity training (HIT) consisting of 4 to 6 x 30-s all-out sprints interspersed with 4-min recovery is an effective training paradigm. Despite the increased utilisation of Wingate-based HIT to bring about training adaptations, the majority of previous studies have been conducted over a relatively short timeframe (2 to 6 weeks). However, activity during recovery period, intervention duration or sprint length have been overlooked. In study 1, the dose response of recovery intensity on performance during typical Wingate-based HIT (4 x 30-s cycle all-out sprints separated by 4-min recovery) was examined and active recovery (cycling at 20 to 40% of V̇O2peak) has been shown to improve sprint performance with successive sprints by 6 to 12% compared to passive recovery (remained still), while increasing aerobic contribution to sprint performance by ~15%. In the following study, 5 to 7% greater endurance performance adaptations were achieved with active recovery (40%V̇O2peak) following 2 weeks of Wingate-based HIT. In the final study, shorter sprint protocol (4 to 6 x 15-s sprints interspersed with 2 min of recovery) has been shown to be as effective as typical 30-s Wingate-based HIT in improving cardiorespiratory function and endurance performance over 9 weeks with the improvements in V̇O2peak being completed within 3 weeks, whereas exercise capacity (time to exhaustion) being increased throughout 9 weeks. In conclusion, the studies demonstrate that active recovery at 40% V̇O2peak significantly enhances endurance adaptations to HIT. Further, the duration of the sprint does not seem to be a driving factor in the magnitude of change with 15 sec sprints providing similar adaptations to 30 sec sprints. Taken together, this suggests that the arrangement of recovery mode should be considered to ensure maximal adaptation to HIT, and the practicality of the training would be enhanced via the reduction in sprint duration without diminishing overall training adaptations.
Resumo:
Introduction: Enviromental factors such as exercise participation and nutrition have often been linked to bone improvements. However, not all sports have the same effects, being non-osteogenic sports such as swimming defined as negative or neutral sports to practice regarding bone mass by some authors, similarly exercise-diet interaction in especific groups is still not clear. Objective: To present the methodology of the RENACIMENTO project that aims to evaluate body composition and more specifically bone mass by several techniques in adolescent swimmers and to observe the effects and perdurability of whole body vibration (WBV) and jumping intervention (JIN) on body composition and fitness on this population and explore posible diet interactions. Design: Randomized controlled trial. Methods: 78 swimmers (12-17 y) and 26 sex- and age-matched controls will participate in this study. Dual energy X-ray, peripheral Quantitative Computed Tomography, Quantitative Ultrasound, Bioelectrical Impedance Analysis, and anthropometry measurements will be performed in order to evaluate body composition. Physical activity, nutrition, pubertal development and socio-economical status may act as confounders of body composition and therefore will also be registered. Several fitness factors regarding strength, endurance, performance and others will also be registered to evaluate differences with controls and act as confounders. A 7-month WBV therapy will be performed by 26 swimmers consisting of a training of 15 minutes 3 times per week. An 8 month JIM will also be performed by 26 swimmers 3 times per week. The remaining 26 swimmers will continue their normal swimming training. Four evaluations will be performed, the first one in order to describe differences between swimmers and controls. The second one to describe the effects of the interventions and the third and fourth evaluations to describe the perdurability of the effects of the WBV and JIN. Conclusion: The RENACIMIENTO project will allow to answer several questions regarding body composition, fitness, bone mass and interaction with diet of adolescent swimmers, describe swimming as a positive, negative or neutral sport to practice regarding these parameters and elucidate the effects and perdurability of WBV and JIM on body composition.
Resumo:
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
Resumo:
O objetivo deste estudo foi comparar a velocidade crítica (VC) determinada através de diferentes distâncias com o limiar anaeróbio (LAn) e as velocidades máximas mantidas em testes de 20 (V20) e 30 (V30) minutos na natação, verificando se a idade cronológica em jovens nadadores interfere nessas relações. Participaram do estudo 31 nadadores (17 meninas e 14 meninos) divididos segundo a idade cronológica em dois grupos: 10 a 12 anos e 13 a 15 anos. O LAn foi determinado como sendo a velocidade correspondente a 4mM de lactato sanguíneo. A VC1 (25/50/100m), VC2 (100/200/400m) e a VC3 (50/100/200m) foram calculadas através do coeficiente angular da reta de regressão linear entre as distâncias e seus respectivos tempos. As V20 e V30 foram determinadas através de três a seis repetições, com coletas de sangue no 10º minuto e ao final do tiro. Para o grupo de 10 a 12 anos, a VC1 (m/s) (0,98 ± 0,17) e o LAn (0,97 ± 0,12) não foram diferentes entre si, sendo maiores do que a VC2 (0,92 ± 0,16), VC3 (0,89 ± 0,18), V20 (0,92 ± 0,11) e V30 (0,90 ± 0,11). Para o grupo de 13 a 15 anos, a VC1 (m/s)(1,11 ± 0,11) foi maior do que o LAn (1,02 ± 0,07), V20 (0,99 ± 0,09), V30 (0,97 ± 0,09), VC2 (0,98 ± 0,11) e VC3 (1,00 ± 0,11). Pode-se concluir que a distância utilizada na determinação da VC interfere no valor obtido, independente da idade cronológica. A VC determinada com distâncias entre 50 e 400m pode ser utilizada na avaliação da capacidade aeróbia de crianças e adolescentes, substituindo os testes contínuos máximos com durações próximas a 20 ou 30 minutos.
Resumo:
O objetivo deste estudo foi analisar a validade do consumo máximo de oxigênio (VO2max), da velocidade correspondente ao VO2max (vVO2max), do tempo de exaustão na vVO2max (Tlim), da economia de corrida (EC) e do limiar anaeróbio (LAn) para a predição da performance de atletas de endurance. Quatorze corredores de endurance (33,4 ± 4,4 anos; 62,7 ± 4,3kg; 166,1 ± 5,0cm; VO2max = 60,4 ± 5,9ml.kg-1.min-1) realizaram os seguintes testes: a) competição simulada nas distâncias de 1.500 e 5.000m. e; b) testes de laboratório para a determinação do VO2max, vVO2max, EC, LAn e Tlim na intensidades de 100% vVO2max. As velocidades (km/h) da vVO2max (18,7 ± 0,8), LAn (17,3 ± 1,1) v1.500m (19,9 ± 0,8) e v5.000m (17,9 ± 0,9) foram significantemente diferentes. A regressão múltipla stepwise revelou que o LAn foi o único preditor da performance da v5.000m, explicando 50% da variação desta performance. Para a v1.500m, o Tlim e a vVO2max explicaram 88% da variação da performance. Com base em nossos resultados, pode-se concluir que a validade dos índices fisiológicos (VO2max, vVO2max, Tlim, EC e LAn), para a predição da performance aeróbia de atletas de endurance, é dependente da distância da prova (1.500 x 5.000m) analisada.
Anaerobic energy provision does not limit Wingate exercise performance in endurance-trained cyclists
Resumo:
[EN] The aim of this study was to evaluate the effects of severe acute hypoxia on exercise performance and metabolism during 30-s Wingate tests. Five endurance- (E) and five sprint- (S) trained track cyclists from the Spanish National Team performed 30-s Wingate tests in normoxia and hypoxia (inspired O(2) fraction = 0.10). Oxygen deficit was estimated from submaximal cycling economy tests by use of a nonlinear model. E cyclists showed higher maximal O(2) uptake than S (72 +/- 1 and 62 +/- 2 ml x kg(-1) x min(-1), P < 0.05). S cyclists achieved higher peak and mean power output, and 33% larger oxygen deficit than E (P < 0.05). During the Wingate test in normoxia, S relied more on anaerobic energy sources than E (P < 0.05); however, S showed a larger fatigue index in both conditions (P < 0.05). Compared with normoxia, hypoxia lowered O(2) uptake by 16% in E and S (P < 0.05). Peak power output, fatigue index, and exercise femoral vein blood lactate concentration were not altered by hypoxia in any group. Endurance cyclists, unlike S, maintained their mean power output in hypoxia by increasing their anaerobic energy production, as shown by 7% greater oxygen deficit and 11% higher postexercise lactate concentration. In conclusion, performance during 30-s Wingate tests in severe acute hypoxia is maintained or barely reduced owing to the enhancement of the anaerobic energy release. The effect of severe acute hypoxia on supramaximal exercise performance depends on training background.
Resumo:
The aim of this study was to examine the acute effects of endurance exercise on jumping and kicking performance in young soccer players. Twenty-one top-class young soccer players (16.1±0.2 years) performed a countermovement jump test and a maximal instep soccer kick test before and after running for 20 min on a treadmill at 80% of their individual maximum heart rate. Two force platforms were used to obtain the following parameters during the countermovement jump: jump height, maximum power, maximum power relative to body mass, maximum vertical ground reaction force, maximum vertical ground reaction force relative to body mass, and maximum vertical ground reaction force applied to each leg. Maximum vertical ground reaction force and maximum vertical ground reaction force relative to body mass applied to the support leg during the kicks were also calculated with a force platform. The kicking motion was recorded using a three-dimensional motion-capture system. Maximum velocity of the ball, maximum linear velocity of the toe, ankle, knee and hip, and linear velocity of the toe at ball contact during the kicks were calculated. Non-significant differences were found in the parameters measured during the countermovement jump and the maximal instep soccer kick test before and after running, suggesting that the jumping and kicking performances of top-class young soccer players were not significantly affected after 20 min treadmill running at 80% of their individual maximum heart rate.
Resumo:
Applying ice or other forms of topical cooling is a popular method of treating sports injuries. It is commonplace for athletes to return to competitive activity, shortly or immediately after the application of a cold treatment. In this article, we examine the effect of local tissue cooling on outcomes relating to functional performance and to discuss their relevance to the sporting environment. A computerized literature search, citation tracking and hand search was performed up to April, 2011. Eligible studies were trials involving healthy human participants, describing the effects of cooling on outcomes relating to functional performance. Two reviewers independently assessed the validity of included trials and calculated effect sizes. Thirty five trials met the inclusion criteria; all had a high risk of bias. The mean sample size was 19. Meta-analyses were not undertaken due to clinical heterogeneity. The majority of studies used cooling durations >20 minutes. Strength (peak torque/force) was reported by 25 studies with approximately 75% recording a decrease in strength immediately following cooling. There was evidence from six studies that cooling adversely affected speed, power and agility-based running tasks; two studies found this was negated with a short rewarming period. There was conflicting evidence on the effect of cooling on isolated muscular endurance. A small number of studies found that cooling decreased upper limb dexterity and accuracy. The current evidence base suggests that athletes will probably be at a performance disadvantage if they return to activity immediately after cooling. This is based on cooling for longer than 20 minutes, which may exceed the durations employed in some sporting environments. In addition, some of the reported changes were clinically small and may only be relevant in elite sport. Until better evidence is available, practitioners should use short cooling applications and/or undertake a progressive warm up prior to returning to play.
Resumo:
INTRODUCTION: The large increase in the number of athletes who apply to use inhaled beta agonists (IBAs) at the Olympic Games is a concern to the medical community. This review will examine the use of IBAs in the asthmatic athlete, the variability that exists between countries and sport, and outline a plan to justify the use of these medications. DATA SOURCES: Much of this article is a result of an International Olympic Committee (IOC) Medical Commission-sponsored meeting that took place in May 2001. Records of the use of IBAs at previous Olympics were reviewed. MEDLINE Searches (PubMed interface) were performed using key words to locate published work relating to asthma, elite athletes, performance, treatment, and ergogenic aids. MAIN RESULTS: Since 1984 there have been significant increases in the use of IBAs at the Olympic Games as well as marked geographical differences in the percentage of athletes requesting the use of IBAs. There are large differences in the incidence of IBA use between sports with a trend towards increased use in endurance sports. There are no ergogenic effects of any IOC-approved IBA given in a therapeutic dose. CONCLUSIONS: In many cases, the prescription of IBAs to this population has been made on empirical grounds. Beginning with the 2002 Winter Games, athletes will be required to submit to the IOC Medical Commission clinical and laboratory evidence that justifies the use of this medication. The eucapnic voluntary hyperpnea test will be used to assess individuals who have not satisfied an independent medical panel of the need to use an IBA.
Resumo:
PURPOSE: We used gene microarray analysis to compare the global expression profile of genes involved in adaptation to training in skeletal muscle from chronically strength-trained (ST), endurance-trained (ET), and untrained control subjects (Con). METHODS: Resting skeletal muscle samples were obtained from the vastus lateralis of 20 subjects (Con n = 7, ET n = 7, ST n = 6; trained [TR] groups >8 yr specific training). Total RNA was extracted from tissue for two color microarray analysis and quantative (Q)-PCR. Trained subjects were characterized by performance measures of peak oxygen uptake V?O 2peak) on a cycle ergometer and maximal concentric and eccentric leg strength on an isokinetic dynamometer. RESULTS: Two hundred and sixty-three genes were differentially expressed in trained subjects (ET + ST) compared with Con (P < 0.05), whereas 21 genes were different between ST and ET (P < 0.05). These results were validated by reverse transcriptase polymerase chain reaction for six differentially regulated genes (EIFSJ, LDHB, LMO4, MDH1, SLC16A7, and UTRN. Manual cluster analyses revealed significant regulation of genes involved in muscle structure and development in TR subjects compared with Con (P < 0.05) and expression correlated with measures of performance (P < 0.05). ET had increased whereas ST had decreased expression of gene clusters related to mitochondrial/oxidative capacity (P ?‰Currency sign 0.05). These mitochondrial gene clusters correlated with V?O2peak (P < 0.05). V?O2peak also correlated with expression of gene clusters that regulate fat and carbohydrate oxidation (P < 0.05). CONCLUSION: We demonstrate that chronic training subtly coregulates numerous genes from important functional groups that may be part of the long-term adaptive process to adapt to repeated training stimuli.