914 resultados para Empirical Mode Decomposition, vibration-based analysis, damage detection, signal decomposition
Resumo:
The impact of the adequacy of empirical therapy on outcome for patients with bloodstream infections (BSI) is key for determining whether adequate empirical coverage should be prioritized over other, more conservative approaches. Recent systematic reviews outlined the need for new studies in the field, using improved methodologies. We assessed the impact of inadequate empirical treatment on the mortality of patients with BSI in the present-day context, incorporating recent methodological recommendations. A prospective multicenter cohort including all BSI episodes in adult patients was performed in 15 hospitals in Andalucía, Spain, over a 2-month period in 2006 to 2007. The main outcome variables were 14- and 30-day mortality. Adjusted analyses were performed by multivariate analysis and propensity score-based matching. Eight hundred one episodes were included. Inadequate empirical therapy was administered in 199 (24.8%) episodes; mortality at days 14 and 30 was 18.55% and 22.6%, respectively. After controlling for age, Charlson index, Pitt score, neutropenia, source, etiology, and presentation with severe sepsis or shock, inadequate empirical treatment was associated with increased mortality at days 14 and 30 (odds ratios [ORs], 2.12 and 1.56; 95% confidence intervals [95% CI], 1.34 to 3.34 and 1.01 to 2.40, respectively). The adjusted ORs after a propensity score-based matched analysis were 3.03 and 1.70 (95% CI, 1.60 to 5.74 and 0.98 to 2.98, respectively). In conclusion, inadequate empirical therapy is independently associated with increased mortality in patients with BSI. Programs to improve the quality of empirical therapy in patients with suspicion of BSI and optimization of definitive therapy should be implemented.
Resumo:
Vibration-based damage identification (VBDI) techniques have been developed in part to address the problems associated with an aging civil infrastructure. To assess the potential of VBDI as it applies to highway bridges in Iowa, three applications of VBDI techniques were considered in this study: numerical simulation, laboratory structures, and field structures. VBDI techniques were found to be highly capable of locating and quantifying damage in numerical simulations. These same techniques were found to be accurate in locating various types of damage in a laboratory setting with actual structures. Although there is the potential for these techniques to quantify damage in a laboratory setting, the ability of the methods to quantify low-level damage in the laboratory is not robust. When applying these techniques to an actual bridge, it was found that some traditional applications of VBDI methods are capable of describing the global behavior of the structure but are most likely not suited for the identification of typical damage scenarios found in civil infrastructure. Measurement noise, boundary conditions, complications due to substructures and multiple material types, and transducer sensitivity make it very difficult for present VBDI techniques to identify, much less quantify, highly localized damage (such as small cracks and minor changes in thickness). However, while investigating VBDI techniques in the field, it was found that if the frequency-domain response of the structure can be generated from operating traffic load, the structural response can be animated and used to develop a holistic view of the bridge’s response to various automobile loadings. By animating the response of a field bridge, concrete cracking (in the abutment and deck) was correlated with structural motion and problem frequencies (i.e., those that cause significant torsion or tension-compression at beam ends) were identified. Furthermore, a frequency-domain study of operational traffic was used to identify both common and extreme frequencies for a given structure and loading. Common traffic frequencies can be compared to problem frequencies so that cost-effective, preventative solutions (either structural or usage-based) can be developed for a wide range of IDOT bridges. Further work should (1) perfect the process of collecting high-quality operational frequency response data; (2) expand and simplify the process of correlating frequency response animations with damage; and (3) develop efficient, economical, preemptive solutions to common damage types.
Resumo:
In this work, a previously-developed, statistical-based, damage-detection approach was validated for its ability to autonomously detect damage in bridges. The damage-detection approach uses statistical differences in the actual and predicted behavior of the bridge caused under a subset of ambient trucks. The predicted behavior is derived from a statistics-based model trained with field data from the undamaged bridge (not a finite element model). The differences between actual and predicted responses, called residuals, are then used to construct control charts, which compare undamaged and damaged structure data. Validation of the damage-detection approach was achieved by using sacrificial specimens that were mounted to the bridge and exposed to ambient traffic loads and which simulated actual damage-sensitive locations. Different damage types and levels were introduced to the sacrificial specimens to study the sensitivity and applicability. The damage-detection algorithm was able to identify damage, but it also had a high false-positive rate. An evaluation of the sub-components of the damage-detection methodology and methods was completed for the purpose of improving the approach. Several of the underlying assumptions within the algorithm were being violated, which was the source of the false-positives. Furthermore, the lack of an automatic evaluation process was thought to potentially be an impediment to widespread use. Recommendations for the improvement of the methodology were developed and preliminarily evaluated. These recommendations are believed to improve the efficacy of the damage-detection approach.
Resumo:
The objective of this work was to develop a low-cost portable damage detection tool to assess and predict damage areas in highway bridges. The proposed tool was based on standard vibration-based damage identification (VBDI) techniques but was extended to a new approach based on operational traffic load. The methodology was tested using numerical simulations, laboratory experiments, and field testing.
Resumo:
BACKGROUND: Studies on hexaminolevulinate (HAL) cystoscopy report improved detection of bladder tumours. However, recent meta-analyses report conflicting effects on recurrence. OBJECTIVE: To assess available clinical data for blue light (BL) HAL cystoscopy on the detection of Ta/T1 and carcinoma in situ (CIS) tumours, and on tumour recurrence. DESIGN, SETTING, AND PARTICIPANTS: This meta-analysis reviewed raw data from prospective studies on 1345 patients with known or suspected non-muscle-invasive bladder cancer (NMIBC). INTERVENTION: A single application of HAL cystoscopy was used as an adjunct to white light (WL) cystoscopy. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: We studied the detection of NMIBC (intention to treat [ITT]: n=831; six studies) and recurrence (per protocol: n=634; three studies) up to 1 yr. DerSimonian and Laird's random-effects model was used to obtain pooled relative risks (RRs) and associated 95% confidence intervals (CIs) for outcomes for detection. RESULTS AND LIMITATIONS: BL cystoscopy detected significantly more Ta tumours (14.7%; p<0.001; odds ratio [OR]: 4.898; 95% CI, 1.937-12.390) and CIS lesions (40.8%; p<0.001; OR: 12.372; 95% CI, 6.343-24.133) than WL. There were 24.9% patients with at least one additional Ta/T1 tumour seen with BL (p<0.001), significant also in patients with primary (20.7%; p<0.001) and recurrent cancer (27.7%; p<0.001), and in patients at high risk (27.0%; p<0.001) and intermediate risk (35.7%; p=0.004). In 26.7% of patients, CIS was detected only by BL (p<0.001) and was also significant in patients with primary (28.0%; p<0.001) and recurrent cancer (25.0%; p<0.001). Recurrence rates up to 12 mo were significantly lower overall with BL, 34.5% versus 45.4% (p=0.006; RR: 0.761 [0.627-0.924]), and lower in patients with T1 or CIS (p=0.052; RR: 0.696 [0.482-1.003]), Ta (p=0.040; RR: 0.804 [0.653-0.991]), and in high-risk (p=0.050) and low-risk (p=0.029) subgroups. Some subgroups had too few patients to allow statistically meaningful analysis. Heterogeneity was minimised by the statistical analysis method used. CONCLUSIONS: This meta-analysis confirms that HAL BL cystoscopy significantly improves the detection of bladder tumours leading to a reduction of recurrence at 9-12 mo. The benefit is independent of the level of risk and is evident in patients with Ta, T1, CIS, primary, and recurrent cancer.
Resumo:
Background: The validity of ensemble averaging on event-related potential (ERP) data has been questioned, due to its assumption that the ERP is identical across trials. Thus, there is a need for preliminary testing for cluster structure in the data. New method: We propose a complete pipeline for the cluster analysis of ERP data. To increase the signalto-noise (SNR) ratio of the raw single-trials, we used a denoising method based on Empirical Mode Decomposition (EMD). Next, we used a bootstrap-based method to determine the number of clusters, through a measure called the Stability Index (SI). We then used a clustering algorithm based on a Genetic Algorithm (GA)to define initial cluster centroids for subsequent k-means clustering. Finally, we visualised the clustering results through a scheme based on Principal Component Analysis (PCA). Results: After validating the pipeline on simulated data, we tested it on data from two experiments – a P300 speller paradigm on a single subject and a language processing study on 25 subjects. Results revealed evidence for the existence of 6 clusters in one experimental condition from the language processing study. Further, a two-way chi-square test revealed an influence of subject on cluster membership.
Resumo:
Structural Health Monitoring (SHM) has diverse potential applications, and many groups work in the development of tools and techniques for monitoring structural performance. These systems use arrays of sensors and can be integrated with remote or local computers. There are several different approaches that can be used to obtain information about the existence, location and extension of faults by non destructive tests. In this paper an experimental technique is proposed for damage location based on an observability grammian matrix. The dynamic properties of the structure are identified through experimental data using the eigensystem realization algorithm (ERA). Experimental tests were carried out in a structure through varying the mass of some elements. Output signals were obtained using accelerometers.
Resumo:
This paper discusses the application of a damage detection methodology to monitor the location and extent of partial structural damage. The methodology combines, in an iterative way, the model updating technique based on frequency response functions (FRF) with monitoring data aiming at identifying the damage area of the structure. After the updating procedure reaches a good correlation between the models, it compares the parameters of the damage structure with those of the undamaged one to find the deteriorated area. The influence of the FEM mesh size on the evaluation of the extent of the damage has also been discussed. The methodology is applied using real experimental data from a spatial frame structure.
Resumo:
Structural Health Monitoring (SHM) denotes a system with the ability to detect and interpret adverse changes in structures in order to improve reliability and reduce life-cycle costs. The greatest challenge for designing a SHM system is knowing what changes to look for and how to classify them. Different approaches for SHM have been proposed for damage identification, each one with advantages and drawbacks. This paper presents a methodology for improvement in vibration signal analysis using statistics information involving the probability density. Generally, the presence of noises in input and output signals results in false alarms, then, it is important that the methodology can minimize this problem. In this paper, the proposed approach is experimentally tested in a flexible plate using a piezoelectric (PZT) actuator to provide the disturbance.
Resumo:
This paper describes an image compounding technique based on the use of different apodization functions, the evaluation of the signals phases and information from the interaction of different propagation modes of Lamb waves with defects for enhanced damage detection, resolution and contrast. A 16 elements linear array is attached to a 1 mm thickness isotropic aluminum plate with artificial defects. The array can excite the fundamental A0 and S0 modes at the frequencies of 100 kHz and 360 kHz, respectively. For each mode two synthetic aperture (SA) images with uniform and Blackman apodization and one image of Coherence Factor Map (CFM) are obtained. The specific interaction between each propagation mode and the defects and the characteristics of acoustic radiation patterns due to different apodization functions result in images with different resolution and contrast. From the phase information one of the SA images is selected at each pixel to compound the final image. The SA images are multiplied by the CFM image to improve contrast and for the dispersive A0 mode it is used a technique for dispersion compensation. There is a contrast improvement of 47.5 dB, reducing the dead zone and improving resolution and damage detection. © 2012 IEEE.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The Acoustic emission (AE) technique, as one of non-intrusive and nondestructive evaluation techniques, acquires and analyzes the signals emitting from deformation or fracture of materials/structures under service loading. The AE technique has been successfully applied in damage detection in various materials such as metal, alloy, concrete, polymers and other composite materials. In this study, the AE technique was used for detecting crack behavior within concrete specimens under mechanical and environmental frost loadings. The instrumentations of the AE system used in this study include a low-frequency AE sensor, a computer-based data acquisition device and a preamplifier linking the AE sensor and the data acquisition device. The AE system purchased from Mistras Group was used in this study. The AE technique was applied to detect damage with the following laboratory tests: the pencil lead test, the mechanical three-point single-edge notched beam bending (SEB) test, and the freeze-thaw damage test. Firstly, the pencil lead test was conducted to verify the attenuation phenomenon of AE signals through concrete materials. The value of attenuation was also quantified. Also, the obtained signals indicated that this AE system was properly setup to detect damage in concrete. Secondly, the SEB test with lab-prepared concrete beam was conducted by employing Mechanical Testing System (MTS) and AE system. The cumulative AE events and the measured loading curves, which both used the crack-tip open displacement (CTOD) as the horizontal coordinate, were plotted. It was found that the detected AE events were qualitatively correlated with the global force-displacement behavior of the specimen. The Weibull distribution was vii proposed to quantitatively describe the rupture probability density function. The linear regression analysis was conducted to calibrate the Weibull distribution parameters with detected AE signals and to predict the rupture probability as a function of CTOD for the specimen. Finally, the controlled concrete freeze-thaw cyclic tests were designed and the AE technique was planned to investigate the internal frost damage process of concrete specimens.
Resumo:
A novel methodology for damage detection and location in structures is proposed. The methodology is based on strain measurements and consists in the development of strain field pattern recognition techniques. The aforementioned are based on PCA (principal component analysis) and damage indices (T 2 and Q). We propose the use of fiber Bragg gratings (FBGs) as strain sensors
Resumo:
En muchas áreas de la ingeniería, la integridad y confiabilidad de las estructuras son aspectos de extrema importancia. Estos son controlados mediante el adecuado conocimiento de danos existentes. Típicamente, alcanzar el nivel de conocimiento necesario que permita caracterizar la integridad estructural implica el uso de técnicas de ensayos no destructivos. Estas técnicas son a menudo costosas y consumen mucho tiempo. En la actualidad, muchas industrias buscan incrementar la confiabilidad de las estructuras que emplean. Mediante el uso de técnicas de última tecnología es posible monitorizar las estructuras y en algunos casos, es factible detectar daños incipientes que pueden desencadenar en fallos catastróficos. Desafortunadamente, a medida que la complejidad de las estructuras, los componentes y sistemas incrementa, el riesgo de la aparición de daños y fallas también incrementa. Al mismo tiempo, la detección de dichas fallas y defectos se torna más compleja. En años recientes, la industria aeroespacial ha realizado grandes esfuerzos para integrar los sensores dentro de las estructuras, además de desarrollar algoritmos que permitan determinar la integridad estructural en tiempo real. Esta filosofía ha sido llamada “Structural Health Monitoring” (o “Monitorización de Salud Estructural” en español) y este tipo de estructuras han recibido el nombre de “Smart Structures” (o “Estructuras Inteligentes” en español). Este nuevo tipo de estructuras integran materiales, sensores, actuadores y algoritmos para detectar, cuantificar y localizar daños dentro de ellas mismas. Una novedosa metodología para detección de daños en estructuras se propone en este trabajo. La metodología está basada en mediciones de deformación y consiste en desarrollar técnicas de reconocimiento de patrones en el campo de deformaciones. Estas últimas, basadas en PCA (Análisis de Componentes Principales) y otras técnicas de reducción dimensional. Se propone el uso de Redes de difracción de Bragg y medidas distribuidas como sensores de deformación. La metodología se validó mediante pruebas a escala de laboratorio y pruebas a escala real con estructuras complejas. Los efectos de las condiciones de carga variables fueron estudiados y diversos experimentos fueron realizados para condiciones de carga estáticas y dinámicas, demostrando que la metodología es robusta ante condiciones de carga desconocidas. ABSTRACT In many engineering fields, the integrity and reliability of the structures are extremely important aspects. They are controlled by the adequate knowledge of existing damages. Typically, achieving the level of knowledge necessary to characterize the structural integrity involves the usage of nondestructive testing techniques. These are often expensive and time consuming. Nowadays, many industries look to increase the reliability of the structures used. By using leading edge techniques it is possible to monitoring these structures and in some cases, detect incipient damage that could trigger catastrophic failures. Unfortunately, as the complexity of the structures, components and systems increases, the risk of damages and failures also increases. At the same time, the detection of such failures and defects becomes more difficult. In recent years, the aerospace industry has done great efforts to integrate the sensors within the structures and, to develop algorithms for determining the structural integrity in real time. The ‘philosophy’ has being called “Structural Health Monitoring” and these structures have been called “smart structures”. These new types of structures integrate materials, sensors, actuators and algorithms to detect, quantify and locate damage within itself. A novel methodology for damage detection in structures is proposed. The methodology is based on strain measurements and consists in the development of strain field pattern recognition techniques. The aforementioned are based on PCA (Principal Component Analysis) and other dimensional reduction techniques. The use of fiber Bragg gratings and distributed sensing as strain sensors is proposed. The methodology have been validated by using laboratory scale tests and real scale tests with complex structures. The effects of the variable load conditions were studied and several experiments were performed for static and dynamic load conditions, demonstrating that the methodology is robust under unknown load conditions.