992 resultados para Emeishan large igneous province
Resumo:
Peer reviewed
Resumo:
Peer reviewed
Resumo:
FUNDING This study was funded by University of Aberdeen. SUPPLEMENTARY DATA Supplementary data for this paper are available at Journal of Petrology online. ACKNOWLEDGEMENTS The authors wish to thank Claude Herzberg, Estaban Gazel and an anonymous reviewer for thoughtful and constructive reviews.
Resumo:
The Early–mid Cretaceous marks the confluence of three major continental-scale events in eastern Gondwana: (1) the emplacement of a Silicic Large Igneous Province (LIP) near the continental margin; (2) the volcaniclastic fill, transgression and regression of a major epicontinental seaway developed over at least a quarter of the Australian continent; and (3) epeirogenic uplift, exhumation and continental rupturing culminating in the opening of the Tasman Basin c. 84 Ma. The Whitsunday Silicic LIP event had widespread impact, producing both substantial extrusive volumes of dominantly silicic pyroclastic material and coeval first-cycle volcanogenic sediment that accumulated within many eastern Australian sedimentary basins, and principally in the Great Australian Basin system (>2 Mkm3 combined volume). The final pulse of volcanism and volcanogenic sedimentation at c. 105–95 Ma coincided with epicontinental seaway regression, which shows a lack of correspondence with the global sea-level curve, and alternatively records a wider, continental-scale effect of volcanism and rift tectonism. Widespread igneous underplating related to this LIP event is evident from high paleogeothermal gradients and regional hydrothermal fluid flow detectable in the shallow crust and over a broad region. Enhanced CO2 fluxing through sedimentary basins also records indirectly, large-scale, LIP-related mafic underplating. A discrete episode of rapid crustal cooling and exhumation began c. 100–90 Ma along the length of the eastern Australian margin, related to an enhanced phase of continental rifting that was largely amagmatic, and probably a switch from wide–more narrow rift modes. Along-margin variations in detachment fault architecture produced narrow (SE Australia) and wide continental margins with marginal, submerged continental plateaux (NE Australia). Long-lived NE-trending cross-orogen lineaments controlled the switch from narrow to wide continental margin geometries.
Resumo:
We report major and trace element composition, Sr–Nd isotopic and seismological data for a picrite–basalt–rhyolite suite from the northern Tarim uplift (NTU), northwest China. The samples were recovered from 13 boreholes at depths between 5,166 and 6,333 m. The picritic samples have high MgO (14.5–16.8 wt%, volatiles included) enriched in incompatible element and have high 87Sr/86Sr and low 143Nd/144Nd isotopic ratios (εNd (t) = −5.3; Sri = 0.707), resembling the Karoo high-Ti picrites. All the basaltic samples are enriched in TiO2 (2.1–3.2 wt%, volatiles free), have high FeOt abundances (11.27–15.75 wt%, volatiles free), are enriched in incompatible elements and have high Sr and low Nd isotopic ratios (Sri = 0.7049–0.7065; εNd (t) = −4.1 to −0.4). High Nb/La ratios (0.91–1.34) of basalts attest that they are mantle-derived magma with negligible crustal contamination. The rhyolite samples can be subdivided into two coeval groups with overlapping U–Pb zircon ages between 291 ± 4 and 272 ± 2 Ma. Group 1 rhyolites are enriched in Nb and Ta, have similar Nb/La, Nb/U, and Sr–Nd isotopic compositions to the associated basalts, implying that they are formed by fractional crystallization of the basalts. Group 2 rhyolites are depleted in Nb and Ta, have low Nb/La ratios, and have very high Sr and low Nd isotopic ratios, implying that crustal materials have been extensively, if not exclusively, involved in their source. The picrite–basalt–rhyolite suite from the NTU, together with Permian volcanic rocks from elsewhere Tarim basin, constitute a Large Igneous Province (LIP) that is characterized by large areal extent, rapid eruption, OIB-type chemical composition, and eruption of high temperature picritic magma. The Early Permian magmatism, which covered an area >300,000 km2, is therefore named the Tarim Flood Basalt.
Resumo:
From 1989 to 1994 a series of papers outlined evidence for a brief episode of climate change from arid to humid, and then back to arid, during the Carnian Stage of the late Triassic. This time of climate change was compared to marine and terrestrial biotic changes, mainly extinction and then radiation of flora and fauna. Subsequently termed, albeit incorrectly, the Carnian Pluvial Event (CPE) by successive authors, interest in this episode of climatic change has increased steadily, with new evidence being published as well as several challenges to the theory. The exact nature of this humid episode, whether reflecting widespread precipitation or more local effects, as well as its ultimate cause remains equivocal. Bed-by-bed sampling of the Carnian in the Southern Alps (Dolomites), shows the episode began with a negative carbon isotope excursion that lasted for only part of one ammonoid zone (A. austriacum). However, that the Carnian Humid Episode represents a significantly longer period, both environmentally and biotically, is irrefutable. The evidence is strongest in the European, Middle East, Himalayan, North American and Japanese successions, but not always so clear in South America, Antarctica and Australia. The eruption of the Wrangellia Large Igneous Province and global warming (causing increased evaporation in the Tethyan and Panthalassic oceans) are suggested as causes for the humid episode.
Resumo:
The Central Atlantic Magmatic Province (CAMP), emplaced at the Triassic-Jurassic (T-J) boundary (-200 Ma), is among the largest igneous provinces on Earth. The Maranhao basin in NE Brazil is located around 700 km inland and 2000 km from the site of the earliest Pangea disruption. The CAMP tholeiites occur only in the western part of the basin and have been described as low and high-Ti. Here we document the occurrence of two sub-groups among the high-Ti tholeiites in the Western Maranhao basin. The major and trace elements and the Sr-Nd-Pb isotopic ratios define three chemical groups corresponding to the low-Ti (TiO(2)< 1.3 wt.%), high-Ti (TiO(2)-2.0 wt.%) and evolved high-Ti (TiO(2 >)3 wt.%) western Maranhao basin tholeiites (WMBT). The new (40)Ar/(39)Ar plateau ages obtained on plagioclase separates for high-Ti (199.7 +/- 2.4 Ma) and evolved high-Ti WMBT (197.2 +/- 0.5 Ma and 198.2 +/- 0.6 Ma) are indistinguishable and identical to those of previously analyzed low-Ti WMBT (198.5 +/- 0.8 Ma) and to the mean (40)Ar/(39)Ar age of the CAMP (199 +/- 2.4 Ma). We also present the first Re-Os isotopic data for CAMP basalts. The low and high-Ti samples display mantle-like initial ((187)Os/(188)Os)(i) ranging from 0.1267 to 0.1299, while the evolved high-Ti samples are more radiogenic (((187)Os/ (188)Os)(i) up to 0.184) We propose that the high-Ti WMBT were derived from the sub-lithospheric asthenosphere, and contaminated during ascent by interaction with the subcontinental lithospheric mantle (SCLM). The evolved high-Ti WMBT were derived from the same asthenospheric source but experienced crustal contamination. The chemical characteristics of the low-Ti group can be explained by partial melting of the most fertile portions of the SCLM metasomatized during paleo-subduction. Alternatively, the low-Ti WMBT could be derived from the sub-lithospheric asthenosphere but the resulting melts may have undergone contamination by the SCLM. The occurrences of high-Ti basalts are apparently not restricted to the area of initial continental disruption which may bring into question previous interpretations such as those relating high-Ti CAMP magmatism to the initiation of Atlantic ridge spreading or as the expression of a deep mantle plume. We propose that the CAMP magmatism in the Maranhao basin may be attributed to local hotter mantle conditions due to the combined effects of edge-driven convection and large-scale mantle warming under the Pangea supercontinent. The involvement of a mantle-plume with asthenosphere-like isotopic characteristics cannot be ruled out either as one of the main source components of the WMBT or as a heat supplier. (C) 2010 Elsevier BM. All rights reserved.
Resumo:
The deep crustal structure of the Parana Basin of southern Brazil is investigated by analyzing P- and PP-wave receiver functions at 17 Brazilian Lithosphere Seismic Project stations within the basin. The study area can be described as a typical Paleozoic intracratonic basin that hosts one of the largest Large Igneous Province of the world and makes a unique setting for investigating models of basin subsidence and their interaction with mantle plumes. Our study consists of (1) an analysis of the Moho interaction phases in the receiver functions to obtain the thickness and bulk Vp/Vs ratio of the basin`s underlying crust and (2) a joint inversion with Rayleigh-wave dispersion velocities from an independent tomographic study to delineate the detailed S-wave velocity variation with depth. The results of our analysis reveal that Moho depths and bulk Vp/Vs ratios (including sediments) vary between 41 and 48 km and between 1.70 and 1.76, respectively, with the largest values roughly coinciding with the basin`s axis, and that S-wave velocities in the lower crust are generally below 3.8 km/s. Select sites within the basin, however, show lower crustal S-wave velocities slightly above 3.9 km/s suggestive of underplated mafic material. We show that these observations are consistent with a fragmented cratonic root under the Parana basin that defined a zone of weakness for the initial Paleozoic subsidence of the basin and which allowed localized mafic underplating of the crust along the suture zones by Cenozoic magmatism.
Resumo:
We report the first U-Pb baddeleyite/zircon date for a felsic volcanic rock from the Parana Large Igneous Province in south Brazil. The new date of 134.3 +/- 0.8 Ma for a hypocrystalline Chapeco-type dacite from Ourinhos (northern Parana basin) is an important regional time marker for the onset of flood basalt volcanism in the northern and western portion of the province. The dated dacite was erupted onto basement rocks and is overlain by a high-Ti basalt sequence, interpreted to be correlative with Pitanga basalts elsewhere. This new U-Pb date for the Ourinhos dacite is consistent with the local stratigraphy being slightly older than the few reliable step-heating (40)Ar/(39)Ar dates currently available for overlying high-Ti basalts (133.6-131.5 Ma). This indicates an similar to 3 Ma time span for the building of the voluminous high-Ti lava sequence of the Parana basin. On the other hand, it overlaps the (40)Ar/(39)Ar dates (134.8-134.1 Ma) available for the stratigraphically older low-Ti basalt (Gramado + Esmeralda types) and dacite-rhyolite (Palmas type) sequences from South Brazil, which is consistent with the short-lived character of this volcanism and its rapid succession by the high-Ti sequence. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
O Grupo Iricoumé compreende rochas vulcânicas efusivas e piroclásticas, com texturas e estruturas bastante preservadas, que pertence a um extenso evento vulcano-plutônico que marcou a região central do Cráton Amazônico durante o Orosiriano. Tais rochas estão expostas no noroeste do estado do Pará, na porção meridional do sudoeste do Domínio Erepecuru-Trombetas, sul do Escudo das Guianas. Estudos petrográficos permitiram distinguir um vulcanismo explosivo, predominante e representado por rochas piroclásticas (ignimbritos, reoignimbritos, tufo coignimbrítico de queda e lápili-tufo relacionado a surge), e um efusivo, subordinado, representado por fluxos de lavas coerentes e rochas hipabissais (andesitos, lamprófiros espessartíticos e latitos). A maioria das rochas piroclásticas exibe feições diagnósticas da deposição dos piroclastos sob altas temperaturas, sugerindo que as rochas vulcânicas estão provavelmente relacionadas a ambientes de geração de caldeiras. As idades Pb-Pb de 1888 ± 2,5 e 1889 ± 2 Ma obtidas em zircão de ignimbritos traquidacíticos confirmam que a maioria das rochas estudadas pertence ao Grupo Iricoumé. Por outro lado, a idade Pb-Pb de 1992 ± 3 Ma obtida em zircão de um andesito evidencia um episódio vulcânico efusivo orosiriano mais antigo, já reconhecido, localmente, mais a sul, no Domínio Tapajós. Os dados obtidos demonstram a ampla extensão do vulcanismo Iricoumé e rochas vulcânicas correlatas na porção central do Cráton Amazônico, e constituem argumentos favoráveis para associar esse episódio vulcânico e rochas magmáticas correlatas a uma silicic large igneous province (SLIP), como já vem sendo descrito por alguns autores.
Resumo:
New volumetric and mass flux estimates have been calculated for the Kenya Rift. Spatial and temporal histories for volcanic eruptions, lacustrine deposition, and hominin fossil sites are presented, aided by the compilation of a new digital geologic map. Distribution of volcanism over time indicates several periods of southward expansion followed by relative positional stasis. Volcanism occurs throughout the activated rift length, with no obvious abandonment as the rift system migrated. The main exception is a period of volcanic concentration around 10 Ma, when activity was constrained within 2° of the equator. Volumes derived from seismic data indicate a total volume of c. 310,000 km3 (2.47 x 1010 kg/yr ), which is significantly more than the map-derived volumes found here or published previously. Map-based estimates are likely affected by a bias against recognizing small volume events in the older record. Such events are, however, the main driver of erupted volume over the last 5 Ma. A technique developed here to counter this bias results in convergence of the two volume estimation techniques. Relative erupted composition over time is variable. Overall, the erupted material has a mafic to silicic ratio of 0.9:1. Basalts are distinctly more common in the Turkana region, which previously experienced Mesozoic rifting. Despite the near equal ratio of mafic to silicic products, the Kenya Rift otherwise fits the definition of a SLIP. It is proposed that the compositions would better fit the published definition if the Turkana region was not twice-rifted. Lacustrine sedimentation post-dates initial volcanism by about 5 million years, and follows the same volcanic trends, showing south and eastward migration over time. This sedimentation delay is likely related to timing of fault displacements. Evidence of hominin habitation is distinctly abundant in the northern and southern sections of the Kenya Rift, but there is an observed gap in the equatorial rift between 4 and 0.5 million years ago. After 0.5 Ma, sites appear to progress towards the equator. The pattern and timing of hominid site distributions suggests that the equatorial gap in habitation may be the result of active volcanic avoidance.
Resumo:
The petrography, mineralogy and geochemistry of volcanic and subvolcanic rocks in CRP-3 core have been examined in detail in order to characterise and to compare them with volcanic and subvolcanic rocks cropping out in the Victoria Land area, and to define the clast provenance or to establish possible volcanic activity coeval with deposition. Clasts with sizes ranging from granule to boulder show geochemical and mineralogical features comparable with those of Ferrar Supergroup rocks. They display a subalkaline affinity and compositions ranging from basalts to dacite. Three different petrographic groups with distinct textural and grain size features (subophitic, intergranular-intersertal, and glassy-hyalopilitic) are recognised and are related to the emplacement/cooling mechanism. In the sand to silt fraction, the few glass shards that have been recognised are strongly altered: however chemical analyses show they have subalkalic magmatic affinity. Mineral compositions of the abundant free clinopyroxene grains found in the core, are less affected by alteration processes, and indicate an origin from subalkaline magmas. This excludes the presence, during the deposition of CRP-3 rocks of alkaline volcanic activity comparable with the McMurdo Volcanic Group. Strong alteration of the magmatic body intruded the Beacon sandstones obliterates the original mineral assemblage. Geochemical investigations confirm that intrusion is part of the Ferar Large Igneous Province.