944 resultados para Embryos Invitro


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Until now, no primate animals have been successfully cloned to birth with somatic cell nuclear transfer (SCNT) procedures, and little is known about the molecular events that occurred in the reconstructed embryos during preimplantation development. In man

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Somatic cell nuclear transfer (SCNT) is a remarkable process in which a somatic cell nucleus is acted upon by the ooplasm via mechanisms that today remain unknown. Here we show the developmental competence (% blastocyst) of embryos derived from SCNT (21%)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Somatic cell nuclear transfer (SCNT) has been successfully used in many species to produce live cloned offspring, albeit with low efficiency. The low frequency of successful development has usually been ascribed to incomplete or inappropriate reprogramming of the transferred nuclear genome. Elucidating the genetic differences between normal fertilized and cloned embryos is key to understand the low efficiency of SCNT. Here, we show that expression of HSPC117, which encodes a hypothetical protein of unknown function, was absent or very low in cloned mouse blastocysts. To investigate the role of HSPC117 in embryo development, we knocked-down this gene in normal fertilized embryos using RNA interference. We assessed the post-implantation survival of HSPC117 knock-down embryos at 3 stages: E9 (prior to placenta formation); E12 (after the placenta was fully functional) and E19 (post-natal). Our results show that, although siRNA-treated in vivo fertilized/produced (IVP) embryos could develop to the blastocyst stage and implanted without any difference from control embryos, the knock-down embryos showed substantial fetal death, accompanied by placental blood clotting, at E12. Furthermore, comparison of HSPC117 expression in placentas of nuclear transfer (NT), intracytoplasmic sperm injection (ICSI) and IVP embryos confirmed that HSPC117 deficiency correlates well with failures in embryo development: all NT embryos with a fetus, as well as IVP and ICSI embryos, had normal placental HSPC117 expression while those NT embryos showing reduced or no expression of HSPC117 failed to form a fetus. In conclusion, we show that HSPC117 is an important gene for post-implantation development of embryos, and that HSPC117 deficiency leads to fetal abnormalities after implantation, especially following placental formation. We suggest that defects in HSPC117 expression may be an important contributing factor to loss of cloned NT embryos in vivo. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In vitro fertilization (IVF) is a feasible way to utilize sex-sorted sperm to produce offspring of a predetermined sex in the livestock industry. The objective of the present study was to examine the effects of various factors on bovine IVF and to systema

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BALB/c mice were immunized intragastrically with human sperm. Cells from the Peyer's patches and spleens of the immunized mice were for the preparation of hybridomas secreting antisperm monoclonal IgA (mcIgA). The specific ratio of IgA-secreting cells in Peyer's patches was much higher than that in spleen. The binding site on human sperm of 9 of 19 mcIgA was in the post-acrosomal region using an immunofluorescent assay. Two of eight selected mcIgA caused strong human sperm agglutination and three of them produced significant inhibition of mouse in vitro fertilization. No mcIgA tested caused obvious human sperm immobilization or inhibited mouse in vivo fertilization. In vitro assembly of selected mcIgA in ascites with mouse secretory component (SC) caused no significant changes in effects on sperm function and in vitro fertilization. By use of Western blotting, dimer or higher polymers were demonstrated in all selected mcIgAs and corresponding protein antigens in 6 of 8 selected mcIgAs. These results suggest that human sperm function may be inhibited and fertilization rate reduced by specific secretory IgA to human sperm and that secretory immunity to protein antigens of human sperm could be induced by intragastrointestinal immunization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Perfluorooctane sulfonate (PFOS) is widely distributed and persistent in the environment and in wildlife, and it has the potential for developmental toxicity. However, the molecular mechanisms that lead to these toxic effects are not well known. In the present study, proteomic analysis has been performed to investigate the proteins that are differentially expressed in zebrafish embryos exposed to 0.5 mg/l PFOS until 192 h postfertilization. Two-dimensional electrophoresis coupled with mass spectrometry was employed to detect and identify the protein profiles. The analysis revealed that 69 proteins showed altered expression in the treatment group compared to the control group with either increase or decrease in expression levels (more than twofold difference). Of the 69 spots corresponding to the proteins with altered expression, 38 were selected and subjected to matrix-assisted laser desorption/ionization tandem time-of-flight mass spectrometry (TOF/TOF) analysis; 18 proteins were identified in this analysis. These proteins can be categorized into diverse functional classes such as detoxification, energy metabolism, lipid transport/steroid metabolic process, cell structure, signal transduction, and apoptosis. Overall, proteomic analysis using zebrafish embryos serves as an in vivo model in environmental risk assessment and provides insight into the molecular events in PFOS-induced developmental toxicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hexabromocyclododecane (HBCD) is widely used as a brominated flame retardant, and has been detected in the aquatic environment, wild animals, and humans. However, details of the environmental health risk of HBCD are not well known. In this study, zebrafish embryos were used to assess the developmental toxicity of the chemical. Four-hour post-fertilization (hpf) zebrafish embryos were exposed to various concentrations of HBCD (0, 0.05, 0.1, 0.5, and 1.0 mg L-1) until 96 h. Exposure to 0.1, 0.5, and 1.0 mg L-1 HBCD significantly increased the malformation rate and reduced survival in the 0.5 and 1.0 mg L-1 HBCD exposure groups. Acridine orange (AO) staining showed that HBCD exposure resulted in cell apoptosis. Reactive oxygen species (ROS) was significantly induced at exposures of 0.1, 0.5, and 1.0 mg L-1 HBCD. To test the apoptotic pathway, several genes related to cell apoptosis, such as p53, Puma, Apaf-1, caspase-9, and caspase-3, were examined using real-time PCR. The expression patterns of these genes were up-regulated to some extent. Two anti-apoptotic genes, Mdm2 (antagonist of p53) and Bcl-2 (inhibitor of Bax), were down-regulated, and the activity of capspase-9 and caspase-3 was significantly increased. The overall results demonstrate that waterborne HBCD is able to produce oxidative stress and induce apoptosis through the involvement of caspases in zebrafish embryos. The results also indicate that zebrafish embryos can serve as a reliable model for the developmental toxicity of HBCD. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel gene-K23, differentially expressed in cross-subfamily cloned embryos, was isolated by RACE-PCR technique. It had 2580 base pairs (bp) in length, with a 1,425 bp open reading frame (ORF) encoding a putative protein of 474 amino acids (aa). Bioinformatic analysis indicated that K23 had 22 phosphorylation sites, but it had no signal peptides. Developmental expression analysis in zebrafish showed that K23 transcripts were maternally expressed in ovum and the amount of K23 transcripts increased gradually from zygote to pharyngula period. Subcellular localization analysis revealed that K23 protein was homogeneously distributed both in nuclei and cytoplasm. Taken together, our findings indicate that K23 gene is a novel gene differentially expressed in fish cross-subfamily cloned embryos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Comparative analyses of differentially expressed genes between somatic cell nuclear transfer (SCNT) embryos and zygote-developing (ZD) embryos are important for understanding the molecular mechanism underlying the reprogramming processes. Herein, we used the suppression subtractive hybridization approach and from more than 2900 clones identified 96 differentially expressed genes between the SCNT and ZD embryos at the dome stage in zebrafish. We report the first database of differentially expressed genes in zebrafish SCNT embryos. Collectively, our findings demonstrate that zebrafish SCNT embryos undergo significant reprogramming processes during the dome stage. However, most differentially expressed genes are down-regulated in SCNT embryos, indicating failure of reprogramming. Based on Ensembl description and Gene Ontology Consortium annotation, the problems of reprogramming at the dome stage may occur during nuclear remodeling, translation initiation, and regulation of the cell cycle. The importance of regulation from recipient oocytes in cloning should not be underestimated in zebrafish.