958 resultados para Embodied energy


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The building sector requires the worldwide production of 4 billion tonnes of cement annually, consuming more than 40% of global energy and accounting for about 8% of the total CO2 emissions. The SUS-CON project aimed at integrating waste materials in the production cycle of concrete, for both ready-mixed and pre-cast applications, resulting in an innovative light-weight, ecocompatible and cost-effective construction material, made by all-waste materials and characterized by enhanced thermal insulation performance and low embodied energy and CO2. Alkali activated “cementless” binders, which have recently emerged as eco-friendly construction materials, were used in conjunction with lightweight recycled aggregates to produce sustainable concrete for a range of applications. This paper presents some results from the development of a concrete made with a geopolymeric binder (alkali activated fly ash) and aggregate from recycled mixed plastic. Mix optimisation was achieved through an extensive investigation on production parameters for binder and aggregate. The mix recipe was developed for achieving the required fresh and hardened properties. The optimised mix gave compressive strength of about 7 MPa, flexural strength of about 1.3 MPa and a thermal conductivity of 0.34 W/mK. Fresh and hardened properties were deemed suitable for the industrial production of precast products. Precast panels were designed and produced for the construction of demonstration buildings. Mock-ups of about 2.5 x 2.5 x 2.5 m were built at a demo park in Spain both with SUS-CON and Portland cement concrete, monitoring internal and external temperatures. Field results indicate that the SUS-CON mock-ups have better insulation. During the warmest period of the day, the measured temperature in the SUS-CON mock-ups was lower.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the modern built environment, building construction and demolition consume a large amount of energy and emits greenhouse gasses due to widely used conventional construction materials such as reinforced and composite concrete. These materials consume high amount of natural resources and possess high embodied energy. More energy is required to recycle or reuse such materials at the cessation of use. Therefore, it is very important to use recyclable or reusable new materials in building construction in order to conserve natural resources and reduce the energy and emissions associated with conventional materials. Advancements in materials technology have resulted in the introduction of new composite and hybrid materials in infrastructure construction as alternatives to the conventional materials. This research project has developed a lightweight and prefabricatable Hybrid Composite Floor Plate System (HCFPS) as an alternative to conventional floor system, with desirable properties, easy to construct, economical, demountable, recyclable and reusable. Component materials of HCFPS include a central Polyurethane (PU) core, outer layers of Glass-fiber Reinforced Cement (GRC) and steel laminates at tensile regions. This research work explored the structural adequacy and performance characteristics of hybridised GRC, PU and steel laminate for the development of HCFPS. Performance characteristics of HCFPS were investigated using Finite Element (FE) method simulations supported by experimental testing. Parametric studies were conducted to develop the HCFPS to satisfy static performance using sectional configurations, spans, loading and material properties as the parameters. Dynamic response of HCFPS floors was investigated by conducting parametric studies using material properties, walking frequency and damping as the parameters. Research findings show that HCFPS can be used in office and residential buildings to provide acceptable static and dynamic performance. Design guidelines were developed for this new floor system. HCFPS is easy to construct and economical compared to conventional floor systems as it is lightweight and prefabricatable floor system. This floor system can also be demounted and reused or recycled at the cessation of use due to its component materials.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The construction industry accounts for a significant portion of the material consumption of our industrialised societies. That material consumption comes at an environmental cost, and when buildings and infrastructure projects are demolished and discarded, after their useful lifespan, that environmental cost remains largely unrecovered. The expected operational lifespan of modern buildings has become disturbingly short as buildings are replaced for reasons of changing cultural expectations, style, serviceability, locational obsolescence and economic viability. The same buildings however are not always physically or structurally obsolete; the materials and components within them are very often still completely serviceable. While there is some activity in the area of recycling of selected construction materials, such as steel and concrete, this is almost always in the form of down cycling or reprocessing. Very little of this material and component resource is reuse in a way that more effectively captures its potential. One significant impediment to such reuse is that buildings are not designed in a way that facilitates easy recovery of materials and components; they are designed and built for speed of construction and quick economic returns, with little or no consideration of the longer term consequences of their physical matter. This research project explores the potential for the recovery of materials and components if buildings were designed for such future recovery; a strategy of design for disassembly. This is not a new design philosophy; design for disassembly is well understood in product design and industrial design. There are also some architectural examples of design for disassembly; however these are specialist examples and there is no significant attempt to implement the strategy in the main stream construction industry. This paper presents research into the analysis of the embodied energy in buildings, highlighting its significance in comparison with operational energy. Analysis at material, component, and whole-of-building levels shows the potential benefits of strategically designing buildings for future disassembly to recover this embodied energy. Careful consideration at the early design stage can result in the deconstruction of significant portions of buildings and the recovery of their potential through higher order reuse and upcycling.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we discuss the design of a manually operated soil compaction machine that is being used to manufacture stabilized soil blocks (SSB). A case study of manufacturing more than three million blocks in a housing project using manually operated machines is illustrated. The paper is focussed on the design, development, and evaluation of a manually operated soil compaction machine for the production of SSB. It also details the machine design philosophy, compaction characteristics of soils, employment generation potential of small-scale stabilized soil block productions systems, and embodied energy. Static compaction of partially saturated soils was performed to generate force-displacement curves in a confined compaction process were generated. Based on the soil compaction data engineering design aspects of a toggle press are illustrated. The results of time and motion study on block production operations using manual machines are discussed. Critical path network diagrams were used for small-scale SSB production systems. Such production systems generate employment at a very low capital cost.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Social and political concerns are frequently reflected in the design of school buildings, often in turn leading to the development of technical innovations. One example is a recurrent concern about the physical health of the nation, which has at several points over the last century prompted new design approaches to natural light and ventilation. The most critical concern of the current era is the global, rather than the indoor, environment. The resultant political focus on mitigating climate change has resulted in new regulations, and in turn considerable technical changes in building design and construction. The vanguard of this movement has again been in school buildings, set the highest targets for reducing operational carbon by the previous Government. The current austerity measures have moved the focus to the refurbishment and retrofit of existing buildings, in order to bring them up to the exacting new standards. Meanwhile there is little doubt that climate change is happening already, and that the impacts will be considerable. Climate scientists have increasing confidence in their predictions for the future; if today’s buildings are to be resilient to these changes, building designers will need to understand and design for the predicted climates in order to continue to provide comfortable and healthy spaces through the lifetimes of the buildings. This paper describes the decision processes, and the planned design measures, for adapting an existing school for future climates. The project is at St Faith’s School in Cambridge, and focuses on three separate buildings: a large Victorian block built as a substantial domestic dwelling in 1885, a smaller single storey 1970s block with a new extension, and an as-yet unbuilt single storey block designed to passivhaus principles and using environmentally friendly materials. The implications of climate change have been considered for the three particular issues of comfort, construction, and water, as set out in the report on Design for Future Climate: opportunities for adaptation in the built environment (Gething, 2010). The adaptation designs aim to ensure each of the three very different buildings remains fit for purpose throughout the 21st century, continuing to provide a healthy environment for the children. A forth issue, the reduction of carbon and the mitigation of other negative environmental impacts of the construction work, is also a fundamental aim for the school and the project team. Detailed modelling of both the operational and embodied energy and carbon of the design options is therefore being carried out, in order that the whole life carbon costs of the adaptation design options may be minimised. The project has been funded by the Technology Strategy Board as part of the Design for Future Climates programme; the interdisciplinary team includes the designers working on the current school building projects and the school bursar, supported by researchers from the University of Cambridge Centre for Sustainable Development. It is hoped that lessons from the design process, as well as the solutions themselves, will be transferable to other buildings in similar climatic regions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper investigates the potential for the reuse of Belfast's existing Victorian terraced housing. The aim is to study methods behind retrofitting these unique pieces of architectural heritage, bringing them up to modern day standards with reduced energy costs and CO2 emissions in line with the Climate Change Act of 2008 (‘the Act’). It also highlights the characteristics of sustainable retrofitting examples and original prefabricated element, which enable the 19th-century properties to be re-adapted to suit modern day needs. The analysis builds on a report by Mark Hines Architects, in association with SAVE Britain's Heritage,1 in which the company explains the detrimental effect that the ‘Pathfinder’ scheme has had on English cities. Similarly, in Belfast, redevelopment schemes such as that in the ‘Village’ district have intended to replace undervalued terraced housing stock, and search for more sustainable options to retain these homes along with with the embodied energy and traditions attached to them.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A methodology is presented that combines a multi-objective evolutionary algorithm and artificial neural networks to optimise single-storey steel commercial buildings for net-zero carbon impact. Both symmetric and asymmetric geometries are considered in conjunction with regulated, unregulated and embodied carbon. Offsetting is achieved through photovoltaic (PV) panels integrated into the roof. Asymmetric geometries can increase the south facing surface area and consequently allow for improved PV energy production. An exemplar carbon and energy breakdown of a retail unit located in Belfast UK with a south facing PV roof is considered. It was found in most cases that regulated energy offsetting can be achieved with symmetric geometries. However, asymmetric geometries were necessary to account for the unregulated and embodied carbon. For buildings where the volume is large due to high eaves, carbon offsetting became increasingly more difficult, and not possible in certain cases. The use of asymmetric geometries was found to allow for lower embodied energy structures with similar carbon performance to symmetrical structures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hemp-lime concrete is a sustainable alternative to standard building wall materials, with low associated embodied energy. It exhibits good hygric, acoustic and thermal properties, making it an exciting, sustainable building envelope material. When cast in temporary shuttering around a timber frame, it exhibits lower thermal conductivity than concrete, and consequently achieves low U-values in a primarily mono-material wall construction. Although cast relatively thick hemp-lime walls do not generally achieve the low U-values stipulated in building regulations. However assessment of its thermal performance through evaluation of its resistance to thermal transfer alone, underestimates its true thermal quality. The thermal inertia, or reluctance of the wall to change its temperature when exposed to changing environmental temperatures, also has a significant impact on the thermal quality of the wall, the thermal comfort of the interior space and energy consumption due to space heating. With a focus on energy reduction in buildings, regulations emphasise thermal resistance to heat transfer with only less focus on thermal inertia or storage benefits due to thermal mass. This paper investigates dynamic thermal responsiveness in hemp-lime concrete walls. It reports the influence of thermal conductivity, density and specific heat through analysis of steady state and transient heat transfer, in the walls. A novel hot-box design which isolates the conductive heat flow is used, and compared with tests in standard hot-boxes. Thermal diffusivity and effusivity are evaluated, using experimentally measured conductivity, based on analytical relationships. Experimental results evident that hemp-lime exhibits high thermal inertia. They show the thermal inertia characteristics compensate for any limitations in the thermal resistance of the construction material. When viewed together the thermal resistance and mass characteristics of hemp-lime are appropriate to maintain comfortable thermal indoor conditions and low energy operation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Civil

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O desenvolvimento sustentável é um dos grandes desafios dos nossos tempos com inúmeras consequências em várias áreas da nossa sociedade. É uma questão abrangente e essencial para a sobrevivência do modo de vida tal como o conhecemos actualmente. A construção sustentável tem um papel muito importante no desenvolvimento, não só ao nível económico mas também social e cultural. Embora não contemple a energia incorporada, a avaliação do ciclo de vida (ACV), no sector da construção, é um dos métodos mais comuns para avaliar o nível de sustentabilidade. Este trabalho visa os metais como uma das mais promissoras e actuais respostas do sector da construção às crescentes preocupações em relação ao desenvolvimento sustentável. O ferro e derivados são normalmente a base das construções metálicas, residindo no seu potencial de reutilização e reciclagem um dos seus principais factores de sustentabilidade. As estruturas metálicas apresentam características especificas que se coadunam com os requisitos da construção sustentável e que tornam este tipo de construção extremamente versátil e interessante. Neste trabalho, é efectuada uma abordagem sobre a construção metálica ao longo de três partes. A primeira parte é constituída por uma introdução histórica ao ferro e seus derivados enunciando exemplos de construções até aos nossos dias, e pela classificação dos vários tipos de metais e ligas metálicas. Na segunda parte, é abordado o conceito de sustentável e o seu enquadramento no sector da construção, e é feita uma introdução à metodologia de avaliação de ciclo de vida. Na terceira parte, é abordado um exemplo prático de uma estrutura metálica em que são elaboradas e comparadas três soluções. Na origem da diversidade dos elementos comparativos estão o tipo de aço, a origem da energia utilizada no seu fabrico e o tipo de solução técnica adoptada. O objectivo deste trabalho é compreender as repercussões do conceito de sustentabilidade no sector da construção, e desenvolver um método simplificado de avaliação dos impactos ambientais e económicos de soluções metálicas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper assesses the potential for using building integrated photovoltaic (BIPV) roof shingles made from triple-junction amorphous silicon (3a-Si) for electrification and as a roofing material in tropical countries, such as Accra, Ghana. A model roof was constructed using triple-junction amorphous (3a-Si) PV on one section and conventional roofing tiles on the other. The performance of the PV module and tiles were measured, over a range of ambient temperatures and solar irradiance. PVSyst (a computer design software) was used to determine the most appropriate angle of tilt. It was observed that 3a-Si performs well in conditions such as Accra, because it is insensitive to high temperatures. Building integration gives security benefits, and reduces construction costs and embodied energy, compared to freestanding PV systems. Again, it serves as a means of protection from salt spray from the oceans and works well even when shaded. However, compared to conventional roofing materials, 3a-Si would increase the indoor temperature by 1-2 °C depending on the surface area of the roof covered with the PV modules. The results presented in this research enhance the understanding of varying factors involved in the selection of an appropriate method of PV installation to offset the short falls of the conventional roofing material in Ghana.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nowadays utilising the proper HVAC system is essential both in extreme weather conditions and dense buildings design. Hydraulic loops are the most common parts in all air conditioning systems. This article aims to investigate the performance of different hydraulic loop arrangements in variable flow systems. Technical, economic and environmental assessments have been considered in this process. A dynamic system simulation is generated to evaluate the system performance and an economic evaluation is conducted by whole life cost assessment. Moreover, environmental impacts have been studied by considering the whole life energy consumption, CO2 emission, the embodied energy and embodied CO2 of the system components. Finally, decision-making in choosing the most suitable hydraulic system among five well-known alternatives has been proposed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Most of water distribution systems (WDS) need rehabilitation due to aging infrastructure leading to decreasing capacity, increasing leakage and consequently low performance of the WDS. However an appropriate strategy including location and time of pipeline rehabilitation in a WDS with respect to a limited budget is the main challenge which has been addressed frequently by researchers and practitioners. On the other hand, selection of appropriate rehabilitation technique and material types is another main issue which has yet to address properly. The latter can affect the environmental impacts of a rehabilitation strategy meeting the challenges of global warming mitigation and consequent climate change. This paper presents a multi-objective optimization model for rehabilitation strategy in WDS addressing the abovementioned criteria mainly focused on greenhouse gas (GHG) emissions either directly from fossil fuel and electricity or indirectly from embodied energy of materials. Thus, the objective functions are to minimise: (1) the total cost of rehabilitation including capital and operational costs; (2) the leakage amount; (3) GHG emissions. The Pareto optimal front containing optimal solutions is determined using Non-dominated Sorting Genetic Algorithm NSGA-II. Decision variables in this optimisation problem are classified into a number of groups as: (1) percentage proportion of each rehabilitation technique each year; (2) material types of new pipeline for rehabilitation each year. Rehabilitation techniques used here includes replacement, rehabilitation and lining, cleaning, pipe duplication. The developed model is demonstrated through its application to a Mahalat WDS located in central part of Iran. The rehabilitation strategy is analysed for a 40 year planning horizon. A number of conventional techniques for selecting pipes for rehabilitation are analysed in this study. The results show that the optimal rehabilitation strategy considering GHG emissions is able to successfully save the total expenses, efficiently decrease the leakage amount from the WDS whilst meeting environmental criteria.