1000 resultados para Ellipsometric spectroscopy
Resumo:
The application of near-infrared and infrared spectroscopy has been used for identification and distinction of basic Cu-sulphates that include devilline, chalcoalumite and caledonite. Near-infrared spectra of copper sulphate minerals confirm copper in divalent state. Jahn-Teller effect is more significant in chalcoalumite where 2B1g ® 2B2g transition band shows a larger splitting (490 cm-1) confirming more distorted octahedral coordination of Cu2+ ion. One symmetrical band at 5145 cm-1 with shoulder band 5715 cm-1 result from the absorbed molecular water in the copper complexes are the combinations of OH vibrations of H2O. One sharp band at around 3400 cm-1 in IR common to the three complexes is evidenced by Cu-OH vibrations. The strong absorptions observed at 1685 and 1620 cm-1 for water bending modes in two species confirm strong hydrogen bonding in devilline and chalcoalumite. The multiple bands in v3 and v4(SO4)2- stretching regions are attributed to the reduction of symmetry to the sulphate ion from Td to C2V. Chalcoalumite, the excellent IR absorber over the range 3800-500 cm-1 is treated as most efficient heat insulator among the Cu-sulphate complexes.
Resumo:
Insight into the unique structure of hydrotalcites has been obtained using Raman spectroscopy. Gallium containing hydrotalcites of formula Mg4Ga2(CO3)(OH)12•4H2O (2:1 Ga-HT) to Mg8Ga2(CO3)(OH)20•4H2O (4:1 Ga-HT) have been successfully synthesised and characterized by X-ray diffraction and Raman spectroscopy. The d(003) spacing varied from 7.83 Å for the 2:1 hydrotalcite to 8.15 Å for the 3:1 gallium containing hydrotalcite. Raman spectroscopy complemented with selected infrared data has been used to characterise the synthesised gallium containing hydrotalcites of formula Mg6Ga2(CO3)(OH)16•4H2O. Raman bands observed at around 1046, 1048 and 1058 cm-1 were attributed to the symmetric stretching modes of the (CO32-) units. Multiple ν3 CO32- antisymmetric stretching modes are found at around 1346, 1378, 1446, 1464 and 1494 cm-1. The splitting of this mode indicates the carbonate anion is in a perturbed state. Raman bands observed at 710 and 717 cm-1 assigned to the ν4 (CO32-) modes support the concept of multiple carbonate species in the interlayer.
Resumo:
Near-infrared (NIR) and Fourier transform infrared (FTIR) spectroscopy have been used to determine the mineralogical character of isomorphic substitutions for Mg2+ by divalent transition metals Fe, Mn, Co and Ni in natural halotrichite series. The minerals are characterised by d-d transitions in NIR region 12000-7500 cm-1. NIR spectrum of halotrichite reveals broad feature from 12000 to 7500 cm-1 with a splitting of two bands resulting from ferrous ion transition 5T2g ® 5Eg. The presence of overtones of OH- fundamentals near 7000 cm-1 confirms molecular water in the mineral structure of the halotrichite series. The appearance of the most intense peak at around 5132 cm-1 is a common feature in the three minerals and is derived from combination of OH- vibrations of water molecules and 2 water bending modes. The influence of cations like Mg2+, Fe2+, Mn2+, Co2+, Ni2+ shows on the spectra of halotrichites. Especially wupatkiite-OH stretching vibrations in which bands are distorted conspicuously to low wave numbers at 3270, 2904 and 2454 cm-1. The observation of high frequency 2 mode in the infrared spectrum at 1640 cm-1 indicates coordination of water molecules is strongly hydrogen bonded in natural halotrichites. The splittings of bands in 3 and 4 (SO4)2- stretching regions may be attributed to the reduction of symmetry from Td to C2v for sulphate ion. This work has shown the usefulness of NIR spectroscopy for the rapid identification and classification of the halotrichite minerals.
Resumo:
NIR and IR spectroscopy has been applied for detection of chemical species and the nature of hydrogen bonding in arsenate complexes. The structure and spectral properties of copper(II) arsenate minerals chalcophyllite and chenevixite are compared with copper(II) sulphate minerals devilline, chalcoalumite and caledonite. Split NIR bands in the electronic spectrum of two ranges 11700-8500 cm-1 and 8500-7200 cm-1 confirm distortion of octahedral symmetry for Cu(II) in the arsenate complexes. The observed bands with maxima at 9860 and 7750 cm-1 are assigned to Cu(II) transitions 2B1g ® 2B2g and 2B1g ® 2A1g. Overlapping bands in the NIR region 4500-4000 cm-1 is the effect of multi anions OH-, (AsO4)3- and (SO4)2-. The observation of broad and diffuse bands in the range 3700-2900 cm-1 confirms strong hydrogen bonding in chalcophyllite relative to chenevixite. The position of the water bending vibrations indicates the water is strongly hydrogen bonded in the mineral structure. The strong absorption feature centred at 1644 cm-1 in chalcophyllite indicates water is strongly hydrogen bonded in the mineral structure. The H2O-bending vibrations shift to low wavenumbers in chenevixite and an additional band observed at 1390 cm-1 is related to carbonate impurity. The characterisation of IR spectra by ν3 antisymmetric stretching vibrations of (SO4)2- and (AsO4)3 ions near 1100 and 800 cm-1 respectively is the result of isomorphic substitution for arsenate by sulphate in both the minerals of chalcophyllite and chenevixite.
Resumo:
The near-infrared (NIR) and infrared (IR) spectroscopy has been applied for characterisation of three complex Cu-Zn sulphate/phosphate minerals, namely ktenasite, orthoserpierite and kipushite. The spectral signatures of the three minerals are quite distinct in relation to their composition and structure. The effect of structural cations substitution (Zn2+ and Cu2+) on band shifts is significant both in the electronic and vibrational spectra of these Cu-Zn minerals. The variable Cu:Zn ratio between Zn-rich and Cu-rich compositions shows a strong effect on Cu(II) bands in the electronic spectra. The Cu(II) spectrum is most significant in kipushite (Cu-rich) with bands displayed at high wavenumbers at11390 and 7545 cm-1. The isomorphic substitution of Cu2+ for Zn2+ is reflected in the NIR and IR spectroscopic signatures. The multiple bands for 3 and 4 (SO4)2- stretching vibrations in ktenasite and orthoserpierite are attributed to the reduction of symmetry to the sulphate ion from Td to C2V. The IR spectrum of kipushite is characterised by strong (PO4)3- vibrational modes at 1090 and 990 cm-1. The range of IR absorption is higher in Ktenasite than in kipushite while it is intermediate in orthoserpierite.
Resumo:
To date, biodegradable networks and particularly their kinetic chain lengths have been characterized by analysis of their degradation products in solution. We characterize the network itself by NMR analysis in the solvent-swollen state under magic angle spinning conditions. The networks were prepared by photoinitiated cross-linking of poly(dl-lactide)−dimethacrylate macromers (5 kg/mol) in the presence of an unreactive diluent. Using diffusion filtering and 2D correlation spectroscopy techniques, all network components are identified. By quantification of network-bound photoinitiator fragments, an average kinetic chain length of 9 ± 2 methacrylate units is determined. The PDLLA macromer solution was also used with a dye to prepare computer-designed structures by stereolithography. For these networks structures, the average kinetic chain length is 24 ± 4 methacrylate units. In all cases the calculated molecular weights of the polymethacrylate chains after degradation are maximally 8.8 kg/mol, which is far below the threshold for renal clearance. Upon incubation in phosphate buffered saline at 37 °C, the networks show a similar mass loss profile in time as linear high-molecular-weight PDLLA (HMW PDLLA). The mechanical properties are preserved longer for the PDLLA networks than for HMW PDLLA. The initial tensile strength of 47 ± 2 MPa does not decrease significantly for the first 15 weeks, while HMW PDLLA lost 85 ± 5% of its strength within 5 weeks. The physical properties, kinetic chain length, and degradation profile of these photo-cross-linked PDLLA networks make them most suited materials for orthopedic applications and use in (bone) tissue engineering.
Resumo:
Raman spectra of the uranyl titanate mineral davidite-(La) (La,Ce)(Y,U,Fe2+)(Ti,Fe3+)20(O,OH)38 were analysed and related to the mineral structure. Observed bands are attributed to the TiO and (UO2)2+ stretching and bending vibrations, U-OH bending vibrations, H2O and (OH)- stretching, bending and libration modes. U-O bond lengths in uranyls and O-H…O bond lengths are calculated from the wavenumbers assigned to the stretching vibrations. Raman bands of davidite-(La) are in harmony with those of the uranyl oxyhydroxides. The mineral davidite-(La) is metamict as is evidenced by the intensity of the UO stretching and bending modes being of lower intensity than expected and with bands that are significantly broader.
Resumo:
Cubic indium hydroxide nanomaterials were obtained by a low temperature soft-chemical method without any surfactants. The transition of nano-cubic indium hydroxide to cubic indium oxide during dehydroxylation has been studied by infrared emission spectroscopy. The spectra are related to the structure of the materials and the changes in the structure upon thermal treatment. The infrared absorption spectrum of In(OH)3 is characterised by an intense OH deformation band at 1150 cm-1 and two O-H stretching bands at 3107 and 3221 cm-1. In the infrared emission spectra, the hydroxyl-stretching and hydroxyl-bending bands diminish dramatically upon heating, and no intensity remains after 200 °C. However, new low intensity bands are found in the OH deformation region at 915 cm-1 and in OH stretching region at 3437 cm-1. These bands are attributed to the vibrations of newly formed InOH bonds because of the release and transfer of protons during calcination of the nanomaterial. The use of infrared emission spectroscopy enables the low-temperature phase transition brought about through dehydration of In(OH)3 nanocubes to be studied.
Resumo:
The NIR spectra of reichenbachite, scholzite and parascholzite have been studied at 298 K. The spectra of the minerals are different, in line with composition and crystal structural variations. Cation substitution effects are significant in their electronic spectra and three distinctly different electronic transition bands are observed in the near-infrared spectra at high wavenumbers in the 12000-7600 cm-1 spectral region. Reichenbachite electronic spectrum is characterised by Cu(II) transition bands at 9755 and 7520 cm-1. A broad spectral feature observed for ferrous ion in the 12000-9000 cm-1 region both in scholzite and parascholzite. Some what similarities in the vibrational spectra of the three phosphate minerals are observed particularly in the OH stretching region. The observation of strong band at 5090 cm-1 indicates strong hydrogen bonding in the structure of the dimorphs, scholzite and parascholzite. The three phosphates exhibit overlapping bands in the 4800-4000 cm-1 region resulting from the combinations of vibrational modes of (PO4)3- units.