965 resultados para Eletrical resistivity tomography


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Anthropogenic pressure influences the two-way interactions between shallow aquifers and coastal lagoons. Aquifer overexploitation may lead to seawater intrusion, and aquifer recharge from rainfall plus irrigation may, in turn, increase the groundwater discharge into the lagoon. We analyse the evolution, since the 1950s up to the present, of the interactions between the Campo de Cartagena Quaternary aquifer and the Mar Menor coastal lagoon (SE Spain). This is a very heterogeneous and anisotropic detrital aquifer, where aquifer–lagoon interface has a very irregular geometry. Using electrical resistivity tomography, we clearly identified the freshwater–saltwater transition zone and detected areas affected by seawater intrusion. Severity of the intrusion was spatially variable and significantly related to the density of irrigation wells in 1950s–1960s, suggesting the role of groundwater overexploitation. We distinguish two different mechanisms by which water from the sea invades the land: (a) horizontal advance of the interface due to a wide exploitation area and (b) vertical rise (upconing) caused by local intensive pumping. In general, shallow parts of the geophysical profiles show higher electrical resistivity associated with freshwater mainly coming from irrigation return flows, with water resources mostly from deep confined aquifers and imported from Tagus river, 400 km north. This indicates a likely reversal of the former seawater intrusion process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present five profiles from electrical resistivity tomography (ERT), with surface constraints and gravity data, in the central uplift of the Araguainha impact structure in central Brazil. The central uplift, the overlying polymict breccias, and decameter-scale impact melt rocks are characterized by contrasting ranges of electrical resistivity. Our resistivity model provides empirical evidence that supports the existing model in which impact melt and breccias resurged toward the crater center in the final stages of the cratering process. On the basis of our results from the first use of ERT in impact cratering studies, we conclude that the deposition and flow of impact melt and breccias over the central uplift were influenced by the geometry of the lithologic boundaries in the central uplift.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Landfill is an engineering work that aims at to accommodate residues in the smallest possible space in the soil, with minimum damages to the environment and the public health. One in the constructive forms of a controlled landfill is the excavation of ditches with appropriate dimensions, for disposition of solid residues without compactation or impermeabilization. Liquid effluents generated for similar volumes of residues, disposed in ditches with ages different from closing, it should result in physical and chemical alterations you correlated at the time of residence materials. With base in this hypothesis, measures of electric resistivity were accomplished through the of Eletrical Resistivity geophysical method, on residues ditches closed annually between 12/2001 and 12/2007, localized in control landfill of the Cordeirópolis city (SP). The leachate is a liquid effluent generated by the decomposition of organic matter and characterized by high content in total dissolved solids, whose interaction with geological environment results in alterations in terms of electrical resistivity susceptible to detection for the geophysical instrumental. The results suggest a resistivity reduction for leachate percolation produced for ditches recently and increase progressive of the resistivity for older ditches. The statistical comparative analysis with reference values for the area suggests ages of the finish production and percolation leachate for soil and rock below the ditches.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Um dos métodos clássicos da geofísica de exploração é o Método de Eletrorresistividade, estabelecido há um século pelos irmãos Schlumberger e desde então amplamente empregado em prospecção mineral, estudos ambientais e hidrogeologia e em pesquisa de fontes geotermais. Conceitualmente o método consiste de injeção de corrente elétrica na subsuperfície e de medida de diferença de potencial elétrico, resultante da interação da corrente com o meio. As localizações dessas fontes e receptores são determinadas pelo arranjo escolhido para o levantamento. Após o processamento, obtém-se pseudo-seções de resistividade aparente que indicam a distribuição de condutividade em subsuperfície. Devido à simplicidade dos fundamentos físicos de sua formulação, o método apresenta fácil implementação computacional quando comparado aos métodos eletromagnéticos de fonte controlada. Na literatura há inúmeros trabalhos de modelagem computacional, onde se calcula a resposta para problemas 2-D e 3-D. Nestes trabalhos, as pseudo-seções são obtidas a partir do cálculo do potencial elétrico total. Neste trabalho, apresentaremos a resposta da modelagem de eletroresistividade 2-D com o arranjo dipolo-dipolo, obtida a partir do potencial elétrico secundário. A solução é calculada através do método de elementos finitos usando malhas não estruturadas. Para efeito de validação, os resultados são comparados com a resposta 2-D obtida a partir dos potencias totais.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

[EN]The geometry and the hydraulic conductivity of the unsaturated zone is difficult to study from traditional techniques, like samples from trenches that normally provide surficial data or boreholes, that are expensive and provide local information. Non-destructive geophysical techniques and among them the electrical resistivity tomography method can be applicable in volcanic areas, where the lava flows and pyroclastic deposits have a wide range of values depending on the degree of fracturing and weathering of lava flows, and porosity and texture of the pyroclastic deposits. In order to characterize the subsurface geology below the golf course of Bandama (Gran Canaria) has conducted a campaign of electrical resistivity tomography profiles.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The research is part of a survey for the detection of the hydraulic and geotechnical conditions of river embankments funded by the Reno River Basin Regional Technical Service of the Region Emilia-Romagna. The hydraulic safety of the Reno River, one of the main rivers in North-Eastern Italy, is indeed of primary importance to the Emilia-Romagna regional administration. The large longitudinal extent of the banks (several hundreds of kilometres) has placed great interest in non-destructive geophysical methods, which, compared to other methods such as drilling, allow for the faster and often less expensive acquisition of high-resolution data. The present work aims to experience the Ground Penetrating Radar (GPR) for the detection of local non-homogeneities (mainly stratigraphic contacts, cavities and conduits) inside the Reno River and its tributaries embankments, taking into account supplementary data collected with traditional destructive tests (boreholes, cone penetration tests etc.). A comparison with non-destructive methodologies likewise electric resistivity tomography (ERT), Multi-channels Analysis of Surface Waves (MASW), FDEM induction, was also carried out in order to verify the usability of GPR and to provide integration of various geophysical methods in the process of regular maintenance and check of the embankments condition. The first part of this thesis is dedicated to the explanation of the state of art concerning the geographic, geomorphologic and geotechnical characteristics of Reno River and its tributaries embankments, as well as the description of some geophysical applications provided on embankments belonging to European and North-American Rivers, which were used as bibliographic basis for this thesis realisation. The second part is an overview of the geophysical methods that were employed for this research, (with a particular attention to the GPR), reporting also their theoretical basis and a deepening of some techniques of the geophysical data analysis and representation, when applied to river embankments. The successive chapters, following the main scope of this research that is to highlight advantages and drawbacks in the use of Ground Penetrating Radar applied to Reno River and its tributaries embankments, show the results obtained analyzing different cases that could yield the formation of weakness zones, which successively lead to the embankment failure. As advantages, a considerable velocity of acquisition and a spatial resolution of the obtained data, incomparable with respect to other methodologies, were recorded. With regard to the drawbacks, some factors, related to the attenuation losses of wave propagation, due to different content in clay, silt, and sand, as well as surface effects have significantly limited the correlation between GPR profiles and geotechnical information and therefore compromised the embankment safety assessment. Recapitulating, the Ground Penetrating Radar could represent a suitable tool for checking up river dike conditions, but its use has significantly limited by geometric and geotechnical characteristics of the Reno River and its tributaries levees. As a matter of facts, only the shallower part of the embankment was investigate, achieving also information just related to changes in electrical properties, without any numerical measurement. Furthermore, GPR application is ineffective for a preliminary assessment of embankment safety conditions, while for detailed campaigns at shallow depth, which aims to achieve immediate results with optimal precision, its usage is totally recommended. The cases where multidisciplinary approach was tested, reveal an optimal interconnection of the various geophysical methodologies employed, producing qualitative results concerning the preliminary phase (FDEM), assuring quantitative and high confidential description of the subsoil (ERT) and finally, providing fast and highly detailed analysis (GPR). Trying to furnish some recommendations for future researches, the simultaneous exploitation of many geophysical devices to assess safety conditions of river embankments is absolutely suggested, especially to face reliable flood event, when the entire extension of the embankments themselves must be investigated.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Since historical times, coastal areas throughout the eastern Mediterranean are exposed to tsunami hazard. For many decades the knowledge about palaeotsunamis was solely based on historical accounts. However, results from timeline analyses reveal different characteristics affecting the quality of the dataset (i.e. distribution of data, temporal thinning backward of events, local periodization phenomena) that emphasize the fragmentary character of the historical data. As an increasing number of geo-scientific studies give convincing examples of well dated tsunami signatures not reported in catalogues, the non-existing record is a major problem to palaeotsunami research. While the compilation of historical data allows a first approach in the identification of areas vulnerable to tsunamis, it must not be regarded as reliable for hazard assessment. Considering the increasing economic significance of coastal regions (e.g. for mass tourism) and the constantly growing coastal population, our knowledge on the local, regional and supraregional tsunami hazard along Mediterranean coasts has to be improved. For setting up a reliable tsunami risk assessment and developing risk mitigation strategies, it is of major importance (i) to identify areas under risk and (ii) to estimate the intensity and frequency of potential events. This approach is most promising when based on the analysis of palaeotsunami research seeking to detect areas of high palaeotsunami hazard, to calculate recurrence intervals and to document palaeotsunami destructiveness in terms of wave run-up, inundation and long-term coastal change. Within the past few years, geo-scientific studies on palaeotsunami events provided convincing evidence that throughout the Mediterranean ancient harbours were subject to strong tsunami-related disturbance or destruction. Constructed to protect ships from storm and wave activity, harbours provide especially sheltered and quiescent environments and thus turned out to be valuable geo-archives for tsunamigenic high-energy impacts on coastal areas. Directly exposed to the Hellenic Trench and extensive local fault systems, coastal areas in the Ionian Sea and the Gulf of Corinth hold a considerably high risk for tsunami events, respectively.Geo-scientific and geoarcheaological studies carried out in the environs of the ancient harbours of Krane (Cefalonia Island), Lechaion (Corinth, Gulf of Corinth) and Kyllini (western Peloponnese) comprised on-shore and near-shore vibracoring and subsequent sedimentological, geochemical and microfossil analyses of the recovered sediments. Geophysical methods like electrical resistivity tomography and ground penetrating radar were applied in order to detect subsurface structures and to verify stratigraphical patterns derived from vibracores over long distances. The overall geochronological framework of each study area is based on radiocarbon dating of biogenic material and age determination of diagnostic ceramic fragments. Results presented within this study provide distinct evidence of multiple palaeotsunami landfalls for the investigated areas. Tsunami signatures encountered in the environs of Krane, Lechaion and Kyllini include (i) coarse-grained allochthonous marine sediments intersecting silt-dominated quiescent harbour deposits and/or shallow marine environments, (ii) disturbed microfaunal assemblages and/or (iii) distinct geochemical fingerprints as well as (iv) geo-archaeological destruction layers and (v) extensive units of beachrock-type calcarenitic tsunamites. For Krane, geochronological data yielded termini ad or post quem (maximum ages) for tsunami event generations dated to 4150 ± 60 cal BC, ~ 3200 ± 110 cal BC, ~ 650 ± 110 cal BC, and ~ 930 ± 40 cal AD, respectively. Results for Lechaion suggest that the harbour was hit by strong tsunami impacts in the 8th-6th century BC, the 1st-2nd century AD and in the 6th century AD. At Kyllini, the harbour site was affected by tsunami impact in between the late 7th and early 4th cent. BC and between the 4th and 6th cent. AD. In case of Lechaion and Kyllini, the final destruction of the harbour facilities also seems to be related to the tsunami impact. Comparing the tsunami signals obtained for each study areas with geo-scientific data from palaeotsunami events from other sites indicates that the investigated harbour sites represent excellent geo-archives for supra-regional mega-tsunamis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Questa tesi Magistrale è frutto di un'attività di ricerca, che consiste nella realizzazione di un'indagine geofisica di tipo geoelettrico (ERT Electrical Resistivity Tomography). Lo scopo è quello di caratterizzare l'idrogeologia di una porzione limitata dell'acquifero freatico costiero ravennate, situato nella Pineta Ramazzotti di Lido di Dante, cercando di apportare nuove conoscenze sulle dinamiche che favoriscono l'ingressione marina (problema di forte attualità)che potrebbero contribuire a migliorare la gestione e la tutela delle risorse idriche. In questo contesto la tesi si pone come obiettivo quello di valutare l'applicabilità del metodo geoelettrico verificando se questo è in grado d'individuare efficacemente l'interfaccia acqua dolce-salata e le strutture presenti nel sottosuolo, in due tipologie di ambiente, con e senza un sistema di dune. I risultati dimostrano che dal punto di vista scientifico, il metodo geoelettrico ha verificato il principio di Ghyben-Herzberg, il quale suppone che vi sia una relazione inversa tra quota topografica e limite superiore della zona satura con acqua salata, inoltre si è riscontrata una certa stagionalità tra i profili acquisiti in momenti diversi (influenzati dalla piovosità). Mentre dal punto di vista tecnologico, il metodo, è di difficile utilizzo negli ambienti di transizione tanto ché chi si occupa professionalmente di questi rilievi preferisce non eseguirli. Questo è dovuto alla mancanza di un protocollo per le operazioni di acquisizione e a causa dell'elevato rumore di fondo che si riscontra nelle misurazioni. Con questo studio è stato possibile calibrare e sviluppare un protocollo, utilizzabile con diverse spaziature tra gli elettrodi, che è valido per l'area di studio indagata. Si è riscontrato anche che l'utilizzo congiunto delle informazioni delle prospezioni e quelle dei rilievi classici (monitoraggio della superficie freatica, parametri chimico-fisici delle acque sotterranee, rilievo topografico e sondaggi geognostici), generino un prodotto finale di semplice interpretazione e di facile comprensione per le dinamiche in atto.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nel corso del tempo, nell’ambito dell’idrogeologia sono state sviluppate diverse tecniche per la determinazione conducibilità idraulica (K). Negli ultimi decenni sempre maggiori sforzi sono stati compiuti per integrare le tecniche geofisiche a questo specifico settore di ricerca; in particolare le metodologie geoelettriche sono state fonte di molteplici studi per la determinazione indiretta di K. Su questa idea è stato impostato il lavoro presentato in questo elaborato di tesi. Ciò che questo propone è infatti l’esecuzione di test in campo che prevedono il monitoraggio time lapse con tecnologia ERT (Electrical Resistivity Tomography) di un tracciante salino iniettato nel terreno. Il fine ultimo è quello di poter sviluppare una tecnica indiretta per la stima della conducibilità idraulica verticale dei terreni sciolti. Le immagini tomografiche, realizzate in sequenza nel tempo, premettono la visualizzazione l’avanzamento del plume basso resistivo in movimento nel terreno (causato dalla salamoia iniettata). Un successivo confronto grafico fra queste permette di quantificare lo spostamento nel tempo, in modo da calcolare in seguito la velocità di infiltrazione del tracciante, e in ultimo stimare la K del terreno in analisi. I risultati ottenuti con tale metodologia sperimentale, opportunamente elaborati tramite specifici software, sono stati confrontati, dove possibile, con i valori forniti dall’impiego di altre tecniche più tradizionali, in modo da poter valutare la bontà del dato ottenuto. Le aree studio individuate per condurre tali sperimentazioni ricadono all’interno del territorio regionale del Friuli Venezia Giulia, in particolare nell’area di Alta e Bassa pianura friulana. La strumentazione (resistivimetro multicanale VHR X612-EM della MAE-Molisana Apparecchiature Elettroniche) e il software (Res2dinv) per la raccolta e l’elaborazione delle immagini tomografiche sono stati gentilmente messi a disposizione dalla società Geomok s.r.l. del Dott. Geol. Mocchiutti (Udine) con la cui collaborazione è stato realizzato questo elaborato di tesi.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conceptualization of groundwater flow systems is necessary for water resources planning. Geophysical, hydrochemical and isotopic characterization methods were used to investigate the groundwater flow system of a multi-layer fractured sedimentary aquifer along the coastline in Southwestern Nicaragua. A geologic survey was performed along the 46 km2 catchment. Electrical resistivity tomography (ERT) was applied along a 4.4 km transect parallel to the main river channel to identify fractures and determine aquifer geometry. Additionally, three cross sections in the lower catchment and two in hillslopes of the upper part of the catchment were surveyed using ERT. Stable water isotopes, chloride and silica were analyzed for springs, river, wells and piezometers samples during the dry and wet season of 2012. Indication of moisture recycling was found although the identification of the source areas needs further investigation. The upper-middle catchment area is formed by fractured shale/limestone on top of compact sandstone. The lower catchment area is comprised of an alluvial unit of about 15 m thickness overlaying a fractured shale unit. Two major groundwater flow systems were identified: one deep in the shale unit, recharged in the upper-middle catchment area; and one shallow, flowing in the alluvium unit and recharged locally in the lower catchment area. Recharged precipitation displaces older groundwater along the catchment, in a piston flow mechanism. Geophysical methods in combination with hydrochemical and isotopic tracers provide information over different scales and resolutions, which allow an integrated analysis of groundwater flow systems. This approach provides integrated surface and subsurface information where remoteness, accessibility, and costs prohibit installation of groundwater monitoring networks.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Acknowledgements The authors are grateful to Stian Bradford, Chris Gabrielli, and Julie Timms for practical and logistical assistance. The provision of transport by Iain Malcolm and Ross Glover of Marine Scotland Science was greatly appreciated. We also thank the European Research Council ERC (project GA 335910 VEWA) for funding through the VeWa project and the Leverhulme Trust for funding through PLATO (RPG-2014-016).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Geophysical surveying and geoelectricalmethods are effective to study permafrost distribution and conditions in polar environments. Geoelectrical methods are particularly suited to study the spatial distribution of permafrost because of its high electrical resistivity in comparison with that of soil or rock above 0 °C. In the South Shetland Islands permafrost is considered to be discontinuous up to elevations of 20–40ma.s.l., changing to continuous at higher altitudes. There are no specific data about the distribution of permafrost in Byers Peninsula, in Livingston Island, which is the largest ice-free area in the South Shetland Islands. With the purpose of better understanding the occurrence of permanent frozen conditions in this area, a geophysical survey using an electrical resistivity tomography (ERT)methodologywas conducted during the January 2015 field season, combined with geomorphological and ecological studies. Three overlapping electrical resistivity tomographies of 78meach were done along the same profile which ran from the coast to the highest raised beaches. The three electrical resistivity tomographies are combined in an electrical resistivitymodel which represents the distribution of the electrical resistivity of the ground to depths of about 13malong 158m. Several patches of high electrical resistivity were found, and interpreted as patches of sporadic permafrost. The lower limits of sporadic to discontinuous permafrost in the area are confirmed by the presence of permafrost-related landforms nearby. There is a close correspondence between moss patches and permafrost patches along the geoelectrical transect.