99 resultados para Electroplating.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

采用激光相变硬化的方法在电镀前对基体表层预先进行处理,以改善镀层与基体的结合强度,提高其承载能力。借助扫描电镜(SEM)分析镀铬层的组织和界面,对镀层、相变硬化区和基体的硬度变化进行分析,对镀层抗高温烧蚀能力进行测试。结果表明,基体经激光相变硬化处理后,既可以促进镀层外延生长,又可以在镀层和基体之间实现硬度的梯度过渡,从而可以改善结合,缓解应力,提高承载能力,镀层的抗剥落能力和使用寿命得到显著提高。激光相变硬化得到细小的淬火马氏体,位错密度显著增加,表面活性增强,是促进镀层外延生长的主要原因。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interface of a laser-discrete-quenched steel substrate and as-deposited chromium electroplate was investigated by ion beam etching, dissolving-substrate-away and using a Vickers microhardness tester, in an attempt to reveal the mechanism that the service life of the chromium-coated parts is increased by the duplex technique of laser pre-quenching plus chromium post-depositing. The laser quenching of the steel substrate can reduce the steep hardness gradient at the substrate/chromium interface and improve the load-bearing capacity of chromium electroplate. Moreover, the laser quenching prior to plating has an extremely great effect on the morphologies and microstructure of the substrate/chromium interface: there is a transient interlayer at the original substrate/chromium interface while there is not at the laser-quenchedzone/chromium interface; the near-substrate surface microstructure and morphologies of the free-standing chromium electrodeposits, whose substrate was dissolved away with nital 30% in volume, inherit the periodically gradient characteristics of the laser-discrete-quenched substrate surface. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

根据高能束对镀铬涂层及其界面强化机制的不同,镀铬/高能束表面复合技术可分为两类:高能束强化镀铬涂层复合技术和高能束预处理基体/镀铬复合技术.前者典型代表有激光表面强化或等离子体氮化/镀铬涂层;后者主要代表是激光预淬火基体/镀铬复合表面处理.综合阐述了上述3种典型的复合处理技术的原理、目的及实际综合效果;通过试验初步探讨了激光预淬火基体/镀铬复合技术延长镀铬身管寿命的主要机理.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An understanding of the mechanics of nanoscale metals and semiconductors is necessary for the safe and prolonged operation of nanostructured devices from transistors to nanowire- based solar cells to miniaturized electrodes. This is a fascinating but challenging pursuit because mechanical properties that are size-invariant in conventional materials, such as strength, ductility and fracture behavior, can depend critically on sample size when materials are reduced to sub- micron dimensions. In this thesis, the effect of nanoscale sample size, microstructure and structural geometry on mechanical strength, deformation and fracture are explored for several classes of solid materials. Nanocrystalline platinum nano-cylinders with diameters of 60 nm to 1 μm and 12 nm sized grains are fabricated and tested in compression. We find that nano-sized metals containing few grains weaken as sample diameter is reduced relative to grain size due to a change from deformation governed by internal grains to surface grain governed deformation. Fracture at the nanoscale is explored by performing in-situ SEM tension tests on nanocrystalline platinum and amorphous, metallic glass nano-cylinders containing purposely introduced structural flaws. It is found that failure location, mechanism and strength are determined by the stress concentration with the highest local stress whether this is at the structural flaw or a microstructural feature. Principles of nano-mechanics are used to design and test mechanically robust hierarchical nanostructures with structural and electrochemical applications. 2-photon lithography and electroplating are used to fabricate 3D solid Cu octet meso-lattices with micron- scale features that exhibit strength higher than that of bulk Cu. An in-situ SEM lithiation stage is developed and used to simultaneously examine morphological and electrochemical changes in Si-coated Cu meso-lattices that are of interest as high energy capacity electrodes for Li-ion batteries.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neste estudo, a sorção e recuperação de íons metálicos de resíduos sólidos industriais provenientes de uma indústria de galvanoplastia situada no Rio de Janeiro (Brasil) foram investigadas através da utilização de duas resinas comerciais de troca iônica: Lewatit VPOC 1800 (fortemente ácida, tipo gel) e Lewatit VPOC 1960 (fortemente básica, tipo gel), produzidas pela Lanxess-Bayer Chemicals. As características físico-quimicas das resinas e do lodo galvânico foram determinadas. Os estudos de sorção das resinas foram conduzidos em batelada e em coluna. Baseado nesses estudos, os parâmetros de sorção e das curvas de ruptura foram determinados. Os estudos de equilíbrio e cinética de sorção também foram realizados. O resíduo de galvanoplastia era composto pelos metais: Cu2+, Fe3+, Al3+, Ni2+ e Cr3+. A capacidade de sorção qe das resinas Lewatit VPOC 1800 variou entre 0,1-1,9 mg g-1 para Cu2+, 0,01-0,6 mg g-1 para Fe3+ e 0,2-0,4 mg g-1 para Al3+. Enquanto que para a resina Lewatit VPOC 1960, os valores de qe variou entre 0,01-0,4 mg g-1 para Cu2+ e 0,01 0,2 mg g-1 para Fe3+ dependendo da concentração do metal e do tempo de contato. A capacidade de sorção para a resina Lewatit VPOC 1960 foi restrita para íons Cu2+ e Fe3+ os quais formam complexos aniônicos com íons Cl-. O modelo de Freundlich foi o mais adequado para descrever o equilíbrio de troca iônica de ambas as resinas. Já em relação ao mecanismo de sorção, o modelo pseudo-segunda ordem tipo 1 foi o mais aplicável. O ponto de ruptura das resinas Lewatit VPOC 1800 e Lewatit VPOC 1960 em relação aos íons Cu2+ocorreu quando passou através da coluna, 1860 cm3 e 2220 cm3 de solução de resíduo sólido respectivamente (20 g de resina, 100 mg L-1 de íons Cu2+, vazão de 60 cm3 min-1). Os íons metálicos Cu2+, Fe3+, Al3+, foram dessorvidos em alta proporção da resina Lewatit VPOC 1800 passando pela coluna solução aquosa de H2SO4 2,4 mol L-1. Já os metais Cu2+ e Fe3+ foram eluídos da resina Lewatit VPOC 1960 com solução aquosa de HCl 2,0 mol L-1. A recuperação seletiva de Cu2+ não foi alcançada porque Cu2+ e Fe3+ precipitam na mesma faixa de pH

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A proposta do referente estudo foi medir a espessura do depósito de um metal em outro metal base, ou seja, utilizar o processo eletroquímico de Galvanoplastia ou eletrodeposição deste metal, por meio da técnica de fluorescência de raios X (XRF). O uso desta técnica justificou-se pelo interesse em reduzir os custos excessivos durante o processo eletroquímico, bem como, minimizar as possíveis margens de erros para obter resultados satisfatórios nas medidas. Neste trabalho, incluíram-se as medidas da espessura do Níquel (Ni) e análises da intensidade de radiação incidentes e a radiação atenuante, em função da espessura dos elementos Cromo (Cr) e Zinco (Zn), considerando como metal base o elemento Ferro (Fe). Em decorrência disso, em todos os casos foram simulados os processos de deposição do metal onde foram incluídos os resultados de absorção de raios X, além de desprezar a influência de outros fatores como a temperatura, o pH, o tratamento de superfície, entre outros, os quais são necessários para considerar em cada caso.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The maintenance of the growth of the multibillion-dollar semiconductor industry requires the development of techniques for the fabrication and characterisation of nanoscale devices. Consequently, there is great interest in photolithography techniques such as extreme UV and x-ray. Both of these techniques are extremely expensive and technologically very demanding. In this paper we describe research on the feasibility of exploiting x-ray propagation within carbon nanotubes (CNT's) for the fabrication and characterisation of nanoscale devices. This work discusses the parameters determining the design space available. To demonstrate experimentally the feasibility of x-ray propagation, arrays of carbon nanotubes have been grown on silicon membranes. The latter are required to provide structural support for the CNT's while minimising energy loss. To form a waveguide metal is deposited between the nanotubes to block x-ray transmission in this region at the same time as cladding the CNT's. The major challenge has been to fill the spaces between the CNT's with material of sufficient thickness to block x-ray transmission while maintaining the structural integrity of the CNT's. Various techniques have been employed to fill the gaps between the nanotubes including electroplating, sputtering and evaporation. This work highlights challenges encountered in optimising the process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report on an inexpensive, facile and industry viable carbon nanofibre catalyst activation process achieved by exposing stainless steel mesh to an electrolyzed metal etchant. The surface evolution of the catalyst islands combines low-rate electroplating and substrate dissolution. The plasma enhanced chemical vapour deposited carbon nanofibres had aspect-ratios > 150 and demonstrated excellent height and crystallographic uniformity with localised coverage. The nanofibres were well-aligned with spacing consistent with the field emission nearest neighbour electrostatic shielding criteria, without the need of any post-growth processing. Nanofibre inclusion significantly reduced the emission threshold field from 4.5 V/μm (native mesh) to 2.5 V/μm and increased the field enhancement factor to approximately 7000. © 2011 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本文研究了两种微生物及其组合沥取、回收用微生物法治理电镀铬废水产生的铬污泥中的铬。铬污泥富含C、N、O,含铬量为13%, 经X-光电子能谱分析铬以三价态(氢氧化铬)存在。二种微生物分别从一酸性矿水和酸性污泥中分离筛选得到,经鉴定为硫杆菌属 (Thiobacillus Beijerinek)的两个不同种,一为氧化亚铁硫杆菌(Thiobacillu ferrooxidans, TF), 另一为氧化硫硫杆菌 (Thiobacillus thiooxidans, TT)。研究并比较了不同微生物对污泥中铬的沥取能力,结果表明,TT菌沥取铬效率最高。振荡、动 态淋滤、静置等沥取方式经过研究表明动态淋滤为最佳,室温条件下(15-20℃),污泥浓度为20g/L时,总铬沥出率达60%时所需时 间:动态淋滤为48.5h,振荡和静置方式分别为91.22,81.6h。研究了不同温度、不同起始PH、不同污泥浓度及非成熟菌液对微生 物沥取能力的影响:(1) 沥取前期,温度对铬的沥出影响较大;微生物沥取反应基本属一级反应;温度与反应速率的关系基本符合 Arrhenius方程,但沥取后期这一特点并不突出。(2) 沥取液最适起始PH为菌液自然PH;PH值的人为改变将使铬的沥出大大降低。 (3) 污泥浓度与铬的沥出呈正相关,但浓度高于30g/L时,铬的沥出量不再增加。(4) 非成熟菌液沥出铬的能力较差,但沥取液中 微生物生长繁殖较为活跃。总结微生物沥取反应最佳沥取条件为:TT成熟菌液、污泥浓度10g/L、温度25-36℃、动态淋滤方式,此 时铬几乎可100%从污泥中沥出。经扫描电镜分析,沥取开始时,微生物紧密吸附于污泥颗粒表面上,表面紧密吸附为微生物发挥功 能提供了基础。微生物沥取污泥中铬的反应机理推测为:硫细菌代谢产硫酸或氧化Fe2+成Fe3+,利用酸,Fe3+ 及自身氧化酶系统 氧化污泥中Cr3+为Cr6+,Cr6+溶出结晶为CrO3。This paper has studied bioleaching and recovery of Chronium(Cr)from electroplating sludge by two consortum of bacteria and their combination, with sludge produced by microbiological process treating electroplating wastewater containing Cr as material. The share of Cr is 13% and its state is Cr (OH)3 in the sludge. One of the bacteria in the paper was isolated from acid sewage sludge and the other was from acid mineral water. The former was tested and determined as Thiobacillus ferroxidans(TF) and the latter was Thiobacillus thiooxidans(TT). Different microorganisms, responsible for the metal leaching activity, have great influence on the efficiency of leaching. The results showed that TT has biggest power. Experiments were conducted to examined effects of three different ways of leaching(Shaking, Down-leaching, Static-leaching). When temperature was in-door's (15-20℃)and concentration of the sludge was 20g/L, the bioleaching time required to reach 60% of Cr solubilization with the above three ways were 91.2, 48.5, 81.6h respectively. Down-leaching was proved to be the most efficient. The influence of different temperature, initial PH, concentration of the sludge and non-mature inoculum had been studied. The results obtained reveal that: (1) The variation of temperature is important during the time from initial to middle of leaching. The reaction of bioleaching belongs to first-order. The relation between the bioleaching rate constant(In k)and temerature can be expressed by Arrhenius function. (2) The fittest initial PH is the nature PH of mature inoculum. Any alteration with it could cause clearly negative effection. (3) The concentration of the sludge can make strong influence on the bioleaching efficiency. But when the concentration is above 30g/L, the increasing of Cr in the solution is little. (4) If non-mature inoculum acts as the bioleachin microorganism, little quantity of Cr would be gained from the sludge. But the micormass in the solution is very active. The results from electron microscope showed that microorganisms adhered to the surface of the sludge and the adherence was the first stage of the bioleaching. Some salts of Cr can be obtained afer the water of the bioleaching solution being evaporated. By analysing the results of experiment with X-Ray spectroscopy, the salt was identified as CrO3. The recovery rate of Cr is 78.4%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article reports on the performance of a bismuth-coated carbon microdisk electrode (BiFμE) for the determination of trace heavy metals by anodic stripping voltammetry (ASV). The BiFμE was prepared by electrodeposition of a metallic bismuth film onto the microdisk, by applying an in-situ electroplating procedure. To test the performance of the BiFμE, ASV measurements were performed on synthetic solutions containing Cd2+, Pb2+, and Cu2+ as target ions. The results indicated that cadmium and lead gave well-defined ASV peaks with no interference, and their quantitative determination could be carried out straightforwardly. In particular, linear calibration curves over the range 5.0 x 10-8-1.0 x 10-6M for both ions, and detection limits of 7.8 and 2.9 nM, for cadmium and lead, respectively, after applying a 60 sec preconcentration step, were obtained. The reproducibility was also satisfactory, the relative standard deviation (RSD) being within 2.5% for both ions. Copper, instead, gave an ASV response that. in most experimental conditions, overlapped with that of bismuth. This circumstance made the determination of copper at the BiFμE difficult. Since the latter element could be detected reliably at the uncoated carbon microdisk electrode (CμE), both BiFμE and CμE were employed, respectively, for the determination of lead and copper ions in drinking water, wine, and tomato sauce.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

N-Methylimidazolium functionalized strongly basic anion exchange resins in the Cl- form (RCI) and SO46- form (R2SO4) were synthesized and employed for adsorption of Cr(VI) from aqueous solution. FT-IR and elementary analysis proved the structures of anion exchange resins and the content of functional groups. The gel-type strongly basic anion exchange resins had high thermal stability according to TGA and good chemical stability under the experimental conditions. The adsorption behaviors of Cr(VI) on RCI and R2SO4 were studied using the batch technique. It was shown that adsorption equilibrium was reached rapidly within 60 min. The adsorption data for RCI and R2SO4 were consistent with the Langmuir isotherm equation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work concerns the atomic layer deposition (ALD) of copper. ALD is a technique that allows conformal coating of difficult topographies such as narrow trenches and holes or even shadowed regions. However, the deposition of pure metals has so far been less successful than the deposition of oxides except for a few exceptions. Challenges include difficulties associated with the reduction of the metal centre of the precursor at reasonable temperatures and the tendency of metals to agglomerate during the growth process. Cu is a metal of special technical interest as it is widely used for interconnects on CMOS devices. These interconnects are usually fabricated by electroplating, which requires the deposition of thin Cu seed layers onto the trenches and vias. Here, ALD is regarded as potential candidate for replacing the current PVD technique, which is expected to reach its limitations as the critical dimensions continue to shrink. This work is separated into two parts. In the first part, a laboratory-scale ALD reactor was constructed and used for the thermal ALD of Cu. In the second part, the potentials of the application of Cu ALD on industry scale fabrication were examined in a joint project with Applied Materials and Intel. Within this project precursors developed by industrial partners were evaluated on a 300 mm Applied Materials metal-ALD chamber modified with a direct RF-plasma source. A feature that makes ALD a popular technique among researchers is the possibility to produce high- level thin film coatings for micro-electronics and nano-technology with relatively simple laboratory- scale reactors. The advanced materials and surfaces group (AMSG) at Tyndall National Institute operates a range of home-built ALD reactors. In order to carry out Cu ALD experiments, modifications to the normal reactor design had to be made. For example a carrier gas mechanism was necessary to facilitate the transport of the low-volatile Cu precursors. Precursors evaluated included the readily available Cu(II)-diketonates Cu-bis(acetylacetonate), Cu-bis(2,2,6,6-tetramethyl-hepta-3,5-dionate) and Cu-bis(1,1,1,5,5,5-hexafluoacetylacetonate) as well as the Cu-ketoiminate Cu-bis(4N-ethylamino- pent-3-en-2-onate), which is also known under the trade name AbaCus (Air Liquide), and the Cu(I)- silylamide 1,3-diisopropyl-imidazolin-2-ylidene Cu(I) hexamethyldisilazide ([NHC]Cu(hmds)), which was developed at Carleton University Ottawa. Forming gas (10 % H2 in Ar) was used as reducing agent except in early experiments where formalin was used. With all precursors an extreme surface selectivity of the deposition process was observed and significant growth was only achieved on platinum-group metals. Improvements in the Cu deposition process were obtained with [NHC]Cu(hmds) compared with the Cu(II) complexes. A possible reason is the reduced oxidation state of the metal centre. Continuous Cu films were obtained on Pd and indications for saturated growth with a rate of about 0.4 Å/cycle were found for deposition at 220 °C. Deposits obtained on Ru consisted of separated islands. Although no continuous films could be obtained in this work the relatively high density of Cu islands obtained was a clear improvement as compared to the deposits grown with Cu(II) complexes. When ultra-thin Pd films were used as substrates, island growth was also observed. A likely reason for this extreme difference to the Cu films obtained on thicker Pd films is the lack of stress compensation within the thin films. The most likely source of stress compensation in the thicker Pd films is the formation of a graded interlayer between Pd and Cu by inter-diffusion. To obtain continuous Cu films on more materials, reduction of the growth temperature was required. This was achieved in the plasma assisted ALD experiments discussed in the second part of this work. The precursors evaluated included the AbaCus compound and CTA-1, an aliphatic Cu-bis(aminoalkoxide), which was supplied by Adeka Corp.. Depositions could be carried out at very low temperatures (60 °C Abacus, 30 °C CTA-1). Metallic Cu could be obtained on all substrate materials investigated, but the shape of the deposits varied significantly between the substrate materials. On most materials (Si, TaN, Al2O3, CDO) Cu grew in isolated nearly spherical islands even at temperatures as low as 30 °C. It was observed that the reason for the island formation is the coalescence of the initial islands to larger, spherical islands instead of forming a continuous film. On the other hand, the formation of nearly two-dimensional islands was observed on Ru. These islands grew together forming a conductive film after a reasonably small number of cycles. The resulting Cu films were of excellent crystal quality and had good electrical properties; e.g. a resistivity of 2.39 µΩ cm was measured for a 47 nm thick film. Moreover, conformal coating of narrow trenches (1 µm deep 100/1 aspect ratio) was demonstrated showing the feasibility of the ALD process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper presents preliminary studies in electroplating using megasonic agitation to avoid the formation of voids within high aspect ratio microvias that are used for the redistribution of interconnects in high density interconnection technology in printed circuit boards. Through this technique, uniform deposition of metal on the side walls of the vias is possible. High frequency acoustic streaming at megasonic frequencies enables the decrease of the Nernst diffusion layer down to the sub-micron range, allowing thereby conformal electrodeposition in deep grooves. This effect enables the normally convection free liquid near the surface to be agitated. Higher throughput and better control of the material properties of the deposits can be achieved for the manufacturing of embedded interconnections and metal-based MEMS. For optimal filling performance of the microvias, a full design of experiments (DOE) and a multi-physics numerical simulation have been conducted to analyse the influence of megasonic agitation on the plating quality of the microvias. Megasonic based deposition has been found to increase the deposition rate as well as improving the quality of the metal deposits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we propose an agitation method based on megasonic acoustic streaming to overcome the limitations in plating rate and uniformity of the metal deposits during the electroplating process. Megasonic agitation at a frequency of 1 MHz allows the reduction of the thickness of the Nernst diffusion layer to less than 600 nm. Two applications that demonstrate the benefits of megasonic acoustic streaming are presented: the formation of uniform ultra-fine pitch flip-chip bumps and the metallisation of high aspect ratio microvias. For the latter application, a multi-physics based numerical simulation is implemented to describe the hydrodynamics introduced by the acoustic waves as they travel inside the deep microvias.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O Mercúrio é um dos metais pesados mais tóxicos existentes no meio ambiente, é persistente e caracteriza-se por bioamplificar e bioacumular ao longo da cadeia trófica. A poluição com mercúrio é um problema à escala global devido à combinação de emissões naturais e emissões antropogénicas, o que obriga a políticas ambientais mais restritivas sobre a descarga de metais pesados. Consequentemente o desenvolvimento de novos e eficientes materiais e de novas tecnologias para remover mercúrio de efluentes é necessário e urgente. Neste contexto, alguns materiais microporosos provenientes de duas famílias, titanossilicatos e zirconossilicatos, foram investigados com o objectivo de avaliar a sua capacidade para remover iões Hg2+ de soluções aquosas. De um modo geral, quase todos os materiais estudados apresentaram elevadas percentagens de remoção, confirmando que são bons permutadores iónicos e que têm capacidade para serem utilizados como agentes descontaminantes. O titanossilicato ETS-4 foi o material mais estudado devido à sua elevada eficiência de remoção (>98%), aliada à pequena quantidade de massa necessária para atingir essa elevada percentagem de remoção. Com apenas 4 mg⋅dm-3 de ETS-4 foi possível tratar uma solução com uma concentração igual ao valor máximo admissível para descargas de efluentes em cursos de água (50 μg⋅dm-3) e obter água com qualidade para consumo humano (<1.0 μg⋅dm-3), de acordo com a legislação Portuguesa (DL 236/98). Tal como para outros adsorbentes, a capacidade de remoção de Hg2+ do ETS- 4 depende de várias condições experimentais, tais como o tempo de contacto, a massa, a concentração inicial de mercúrio, o pH e a temperatura. Do ponto de vista industrial as condições óptimas para a aplicação do ETS-4 são bastante atractivas, uma vez que não requerem grandes quantidades de material e o tratamento da solução pode ser feito à temperatura ambiente. A aplicação do ETS-4 torna-se ainda mais interessante no caso de efluentes hospitalares, de processos de electro-deposição com níquel, metalúrgica, extracção de minérios, especialmente ouro, e indústrias de fabrico de cloro e soda cáustica, uma vez que estes efluentes apresentam valores de pH semelhantes ao valor de pH óptimo para a aplicação do ETS-4. A cinética do processo de troca iónica é bem descrita pelo modelo Nernst-Planck, enquanto que os dados de equilíbrio são bem ajustados pelas isotérmicas de Langmuir e de Freundlich. Os parâmetros termodinâmicos, ΔG° and ΔH° indicam que a remoção de Hg2+ pelo ETS-4 é um processo espontâneo e exotérmico. A elevada eficiência do ETS-4 é confirmada pelos valores da capacidade de remoção de outros materiais para os iões Hg2+, descritos na literatura. A utilização de coluna de ETS-4 preparada no nosso laboratório, para a remoção em contínuo de Hg2+ confirma que este material apresenta um grande potencial para ser utilizado no tratamento de águas. ABSTRACT: Mercury is one of the most toxic heavy metals, exhibiting a persistent character in the environment and biota as well as bioamplification and bioaccumulation along the food chain. Natural inputs combined with the global anthropogenic sources make mercury pollution a planetary-scale problem, and strict environmental policies on metal discharges have been enforced. The development of efficient new materials and clean-up technologies for removing mercury from effluents is, thus, timely. In this context, in my study, several microporous materials from two families, titanosilicates and zirconosilicates were investigated in order to assess their Hg2+ sorption capacity and removal efficiency, under different operating conditions. In general, almost all microporous materials studied exhibited high removal efficiencies, confirming that they are good ion exchangers and have potential to be used as Hg2+ decontaminant agents. Titanosilicate ETS-4 was the material most studied here, by its highest removal efficiency (>98%) and lowest mass necessary to attain it. Moreover, according with the Portuguese legislation (DL 236/98) it is possible to attain drinking water quality (i.e. [Hg2+]< 1.0 μg⋅dm-3) by treating a solution with a Hg2+ concentration equal to the maximum value admissible for effluents discharges into water bodies (50 μg⋅dm-3), using only 4 mg⋅dm-3 of ETS-4. Even in the presence of major freshwater cations, ETS-4 removal efficiency remains high. Like for other adsorbents, the sorption capacity of ETS-4 for Hg2+ ions is strongly dependent on the operating conditions, such as contact time, mass, initial Hg2+ concentration and solution pH and, to a lesser extent, temperature. The optimum operating conditions found for ETS-4 are very attractive from the industrial point of view because the application of ETS-4 for the treatment of wastewater and/or industrial effluents will not require larges amounts of adsorbent, neither energy supply for temperature adjustments becoming the removal process economically competitive. These conditions become even more interesting in the case of medical institutions liquid, nickel electroplating process, copper smelter, gold ore tailings and chlor-alkali effluents, since no significant pH adjustments to the effluent are necessary. The ion exchange kinetics of Hg2+ uptake is successfully described by the Nernst-Planck based model, while the ion exchange equilibrium is well fitted by both Langmuir and Freundlich isotherms. Moreover, the feasibility of the removal process was confirmed by the thermodynamic parameters (ΔG° and ΔH°) which indicate that the Hg2+ sorption by ETS-4 is spontaneous and exothermic. The higher efficiency of ETS-4 for Hg2+ ions is corroborate by the values reported in literature for the sorption capacity of other adsorbents for Hg2+ ions. The use of an ETS-4 fixed-bed ion exchange column, manufactured in our laboratory, in the continuous removal of Hg2+ ions from solutions confirms that this titanosilicate has potential to be used in industrial water treatment.