980 resultados para Electronic band structure
Resumo:
Lattice constants, elasticity, band structure and piezoelectricity of hexagonal wideband gap BexZn1-xO ternary alloys are calculatedusing firstprinciples methods. The alloys' lattice constants obey Vegard's law well. As Be concentration increases, the bulk modulus and Young's modulus of the alloys increase, whereas the piezoelectricity decreases. We predict that BexZn1-xO/GaN/substrate (x = 0.022) multilayer structure can be suitable for high-frequency surface acoustic wave device applications. Our calculated results are in good agreement with experimental data and other theoretical calculations. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
A tight-binding (TB) treatment with the inclusion of d orbitals is applied to the electronic structures of graphitic tubes. The results show that the high angular moment bases in TB scheme are necessary to account the severe curvature effect in ultra-thin single wall carbon nanotubes, especially for properly reproducing the band edge overlap behavior in (5, 0) tube, predicted by the existing ab initio calculations. In the large diameter limit, the participation of two synnmetry-allowed d bases provides a natural replication to the recent measured electronic dispersions of valence band of graphene when the strong anisotropy due to the two-dimensional planar hexagonal sheet structure is dealt with properly. In addition, the detailed relation between the two sets of quantum numbers of screw symmetry and that of zone folding is formulated in appendix. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The modulation of superlattice band structure via periodic delta-doping in both well and barrier layers have been theoretically investigated, and the importance of interaction between the delta-function potentials in the well layers and those in the barrier layers on SL band structure have been revealed. It is pointed out that the energy dispersion relation Eq. (3) given in [G. Ihm, S.K. Noh, J.I. Lee, J.-S. Hwang, T.W. Kim, Phys. Rev. B 44 (1991) 6266] is an incomplete one, as the interaction between periodic delta-doping in both well and barrier layers had been overlooked. Finally, we have shown numerically that the electron states of a GaAs/Ga0.7Al0.3As superlattice can be altered more efficiently by intelligent tuning the two delta-doping's positions and heights. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Based on the band-anticrossing model, the effect of the strain-compensated layer and the strain-mediated layer on the band structure, the gain, and the differential gain of GaInNAs-GaAs quantum well lasers have been investigated. Different band-filling mechanisms have been illustrated. Compared to the GaInNAs-GaAs single quantum well with the same wavelength,, the introduction. (if the strain-compensated layer and the strain-mediated layer increases the transparency carrier density. However, these multilayer structures help to suppress the degradation of the differential gain.
Resumo:
The strain effect on the band structure of InAs/GaAs quantum dots has been investigated. 1 mu m thick InGaAs cap layer was added onto the InAs quantum dot layer to modify the strain in the quantum dots. The exciton energies of InAs quantum dots before and after the relaxation of the cap layer were determined by photoluminescence. When the epilayer was lifted off from the substrate by etching away the sacrifice layer (AlAs) by HF solution, the energy of exciton in the quantum dots decreases due to band gap narrowing resulted from the strain relaxation. This method can be used to obtain much longer emission wavelength from InAs quantum dots.
Resumo:
The empirical pseudopotential method within the virtual crystal approximation is used to calculate the band structure of Mg1-xZnySySe1-y, which has recently been proved to be a potential semiconductor material for optoelectronic device applications in the blue spectral region. It is shown that MgZnSSe can be a direct or an indirect semiconductor depending on the alloy composition. Electron and hole effective masses are calculated for different compositions. Polynomial approximations are obtained for both the energy gap and the effective mass as functions of alloy composition at the GAMMA valley. This information will be useful for the future design of blue wavelength optoelectronic devices as well as for assessment of their properties.
Resumo:
The band structure of the Zn1-xCdxSySe1-y quaternary alloy is calculated using the empirical pseudopotential method and the virtual crystal approximation. The alloy is found to be a direct-gap semiconductor for all x and y composition. Polynomial approximation is obtained for the energy gap as a function of the composition x and y. Electron and hole effective masses are also calculated along various symmetry axes for different compositions and the results agree fairly well with available experimental values.
Resumo:
The transfer-matrix method widely used in the calculation of the band structure of semiconductor quantum wells is found to have limitations due to its intrinsic numerical instability. It is pointed out that the numerical instability arises from free-propagating transfer matrices. A new scattering-matrix method is developed for the multiple-band Kane model within the envelope-function approximation. Compared with the transfer-matrix method, the proposed algorithm is found to be more efficient and stable. A four-band Kane model is used to check the validity of the method and the results are found to be in good agreement with earlier calculations.
Resumo:
The newly developed multi-quasiparticle triaxial projected shell model approach is employed to study the high-spin band structures in neutron-deficient even-even Ce- and Nd-isotopes. It is observed that gamma-bands are built on each intrinsic configuration of the triaxial mean-field deformation. Due to the fact that a triaxial configuration is a superposition of several K-states, the projection from these states results in several low-lying bands originating from the same intrinsic configuration. This generalizes the well-known concept of the surface gamma-oscillation in deformed nuclei based on the ground-state to gamma-bands built on multi-quasiparticle configurations. This new feature provides an alternative explanation on the observation of two I = 10 aligning states in Ce-134 and both exhibiting a neutron character. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The band structure of CdI has been calculated using a modified semi-empirical tight-binding method and the results obtained have been compared with both angularly averaged and angularly resolved photoemission spectra. The theoretically computed density of states distribution is in excellent agreement with angularly averaged results and all the main features observed experimentally are reproduced in the theory. Angularly resolved spectra have been used to draw up energy band dispersion curves directly and agreement with calculated bands in both the Gamma M and Gamma K directions of the Brillouin zone is good.
Resumo:
The interatomic potential of the system I - I at intermediate and small distances is calculated from atomic DFS electron densities within a statistical model. Structures in the potential, due to the electronic shells, are investigated. Calculations of the elastic differential scattering cross section for small angles and several keV impact energies show a detailed peak pattern which can be correlated to individual electronic shell interaction.
Resumo:
We apply a self-energy-corrected local density approximation (LDA) to obtain corrected bulk band gaps and to study the band offsets of AlAs grown on GaAs (AlAs/GaAs). We also investigate the Al(x)Ga(1-x)As/GaAs alloy interface, commonly employed in band gap engineering. The calculations are fully ab initio, with no adjustable parameters or experimental input, and at a computational cost comparable to traditional LDA. Our results are in good agreement with experimental values and other theoretical studies. Copyright (C) EPLA, 2011
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The intermetallic compounds ScPdZn and ScPtZn were prepared from the elements by high-frequency melting in sealed tantalum ampoules. Both structures were refined from single crystal X-ray diffractometer data: YAlGe type, Cmcm, a = 429.53(8), b = 907.7(1), c = 527.86(1) pm, wR2 = 0.0375, 231 F2 values, for ScPdZn and a = 425.3(1), b = 918.4(2), c = 523.3(1) pm, wR2 = 0.0399, 213 F2 values for ScPtZn with 14 variables per refinement. The structures are orthorhombically distorted variants of the AlB2 type. The scandium and palladium (platinum atoms) build up ordered networks Sc3Pd3 and Sc3Pt3 (boron networks) which are slightly shifted with respect to each other. These networks are penetrated by chains of zinc atoms (262 pm in ScPtZn) which correspond to the aluminum positions, i.e. Zn(ScPd) and Zn(ScPt). The corresponding group-subgroup scheme and the differences in chemical bonding with respect to other AlB2-derived REPdZn and REPtZn compounds are discussed. 45Sc solid state NMR spectra confirm the single crystallographic scandium sites. From electronic band structure calculations the two compounds are found metallic with free electron like behavior at the Fermi level. A larger cohesive energy for ScPtZn suggests a more strongly bonded intermetallic than ScPdZn. Electron localization and overlap population analyses identify the largest bonding for scandium with the transition metal (Pd, Pt).