887 resultados para Electrical and Computer Engineering


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gas sensors have been used widely in different important area including industrial control, environmental monitoring, counter-terrorism and chemical production. Micro-fabrication offers a promising way to achieve sensitive and inexpensive gas sensors. Over the years, various MEMS gas sensors have been investigated and fabricated. One significant type of MEMS gas sensors is based on mass change detection and the integration with specific polymer. This dissertation aims to make contributions to the design and fabrication of MEMS resonant mass sensors with capacitance actuation and sensing that lead to improved sensitivity. To accomplish this goal, the research has several objectives: (1) Define an effective measure for evaluating the sensitivity of resonant mass devices; (2) Model the effects of air damping on microcantilevers and validate models using laser measurement system (3) Develop design guidelines for improving sensitivity in the presence of air damping; (4) Characterize the degree of uncertainty in performance arising from fabrication variation for one or more process sequences, and establish design guidelines for improved robustness. Work has been completed toward these objectives. An evaluation measure has been developed and compared to an RMS based measure. Analytic models of air damping for parallel plate that include holes are compared with a COMSOL model. The models have been used to identify cantilever design parameters that maximize sensitivity. Additional designs have been modeled with COMSOL and the development of an analytical model for Fixed-free cantilever geometries with holes has been developed. Two process flows have been implemented and compared. A number of cantilever designs have been fabricated and the uncertainty in process has been investigated. Variability from processing have been evaluated and characterized.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This document will demonstrate the methodology used to create an energy and conductance based model for power electronic converters. The work is intended to be a replacement for voltage and current based models which have limited applicability to the network nodal equations. Using conductance-based modeling allows direct application of load differential equations to the bus admittance matrix (Y-bus) with a unified approach. When applied directly to the Y-bus, the system becomes much easier to simulate since the state variables do not need to be transformed. The proposed transformation applies to loads, sources, and energy storage systems and is useful for DC microgrids. Transformed state models of a complete microgrid are compared to experimental results and show the models accurately reflect the system dynamic behavior.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transformer protection is one of the most challenging applications within the power system protective relay field. Transformers with a capacity rating exceeding 10 MVA are usually protected using differential current relays. Transformers are an aging and vulnerable bottleneck in the present power grid; therefore, quick fault detection and corresponding transformer de-energization is the key element in minimizing transformer damage. Present differential current relays are based on digital signal processing (DSP). They combine DSP phasor estimation and protective-logic-based decision making. The limitations of existing DSP-based differential current relays must be identified to determine the best protection options for sensitive and quick fault detection. The development, implementation, and evaluation of a DSP differential current relay is detailed. The overall goal is to make fault detection faster without compromising secure and safe transformer operation. A detailed background on the DSP differential current relay is provided. Then different DSP phasor estimation filters are implemented and evaluated based on their ability to extract desired frequency components from the measured current signal quickly and accurately. The main focus of the phasor estimation evaluation is to identify the difference between using non-recursive and recursive filtering methods. Then the protective logic of the DSP differential current relay is implemented and required settings made in accordance with transformer application. Finally, the DSP differential current relay will be evaluated using available transformer models within the ATP simulation environment. Recursive filtering methods were found to have significant advantage over non-recursive filtering methods when evaluated individually and when applied in the DSP differential relay. Recursive filtering methods can be up to 50% faster than non-recursive methods, but can cause false trip due to overshoot if the only objective is speed. The relay sensitivity is however independent of filtering method and depends on the settings of the relay’s differential characteristics (pickup threshold and percent slope).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this research was to develop a working physical model of the focused plenoptic camera and develop software that can process the measured image intensity, reconstruct this into a full resolution image, and to develop a depth map from its corresponding rendered image. The plenoptic camera is a specialized imaging system designed to acquire spatial, angular, and depth information in a single intensity measurement. This camera can also computationally refocus an image by adjusting the patch size used to reconstruct the image. The published methods have been vague and conflicting, so the motivation behind this research is to decipher the work that has been done in order to develop a working proof-of-concept model. This thesis outlines the theory behind the plenoptic camera operation and shows how the measured intensity from the image sensor can be turned into a full resolution rendered image with its corresponding depth map. The depth map can be created by a cross-correlation of adjacent sub-images created by the microlenslet array (MLA.) The full resolution image reconstruction can be done by taking a patch from each MLA sub-image and piecing them together like a puzzle. The patch size determines what object plane will be in-focus. This thesis also goes through a very rigorous explanation of the design constraints involved with building a plenoptic camera. Plenoptic camera data from Adobe © was used to help with the development of the algorithms written to create a rendered image and its depth map. Finally, using the algorithms developed from these tests and the knowledge for developing the plenoptic camera, a working experimental system was built, which successfully generated a rendered image and its corresponding depth map.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inductive-capacitive (LC) resonant circuit sensors are low-cost, wireless, durable, simple to fabricate and battery-less. Consequently, they are well suited to sensing applications in harsh environments or in situations where large numbers of sensors are needed. They are also advantageous in applications where access to the sensor is limited or impossible or when sensors are needed on a disposable basis. Due to their many advantages, LC sensors have been used for sensing a variety of parameters including humidity, temperature, chemical concentrations, pH, stress/pressure, strain, food quality and even biological growth. However, current versions of the LC sensor technology are limited to sensing only one parameter. The purpose of this work is to develop new types of LC sensor systems that are simpler to fabricate (hence lower cost) or capable of monitoring multiple parameters simultaneously. One design presented in this work, referred to as the multi-element LC sensor, is able to measure multiple parameters simultaneously using a second capacitive element. Compared to conventional LC sensors, this design can sense multiple parameters with a higher detection range than two independent sensors while maintaining the same overall sensor footprint. In addition, the two-element sensor does not suffer from interference issues normally encountered while implementing two LC sensors in close proximity. Another design, the single-spiral inductive-capacitive sensor, utilizes the parasitic capacitance of a coil or spring structure to form a single layer LC resonant circuit. Unlike conventional LC sensors, this design is truly planar, thus simplifying its fabrication process and reducing sensor cost. Due to the simplicity of this sensor layout it will be easier and more cost-effective for embedding in common building or packaging materials during manufacturing processes, thereby adding functionality to current products (such as drywall sheets) while having a minor impact on overall unit cost. These modifications to the LC sensor design significantly improve the functionality and commercial feasibility of this technology, especially for applications where a large array of sensors or multiple sensing parameters are required.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An invisibility cloak is a device that can hide the target by enclosing it from the incident radiation. This intriguing device has attracted a lot of attention since it was first implemented at a microwave frequency in 2006. However, the problems of existing cloak designs prevent them from being widely applied in practice. In this dissertation, we try to remove or alleviate the three constraints for practical applications imposed by loosy cloaking media, high implementation complexity, and small size of hidden objects compared to the incident wavelength. To facilitate cloaking design and experimental characterization, several devices and relevant techniques for measuring the complex permittivity of dielectric materials at microwave frequencies are developed. In particular, a unique parallel plate waveguide chamber has been set up to automatically map the electromagnetic (EM) field distribution for wave propagation through the resonator arrays and cloaking structures. The total scattering cross section of the cloaking structures was derived based on the measured scattering field by using this apparatus. To overcome the adverse effects of lossy cloaking media, microwave cloaks composed of identical dielectric resonators made of low loss ceramic materials are designed and implemented. The effective permeability dispersion was provided by tailoring dielectric resonator filling fractions. The cloak performances had been verified by full-wave simulation of true multi-resonator structures and experimental measurements of the fabricated prototypes. With the aim to reduce the implementation complexity caused by metamaterials employment for cloaking, we proposed to design 2-D cylindrical cloaks and 3-D spherical cloaks by using multi-layer ordinary dielectric material (εr>1) coating. Genetic algorithm was employed to optimize the dielectric profiles of the cloaking shells to provide the minimum scattering cross sections of the cloaked targets. The designed cloaks can be easily scaled to various operating frequencies. The simulation results show that the multi-layer cylindrical cloak essentially outperforms the similarly sized metamaterials-based cloak designed by using the transformation optics-based reduced parameters. For the designed spherical cloak, the simulated scattering pattern shows that the total scattering cross section is greatly reduced. In addition, the scattering in specific directions could be significantly reduced. It is shown that the cloaking efficiency for larger targets could be improved by employing lossy materials in the shell. At last, we propose to hide a target inside a waveguide structure filled with only epsilon near zero materials, which are easy to implement in practice. The cloaking efficiency of this method, which was found to increase for large targets, has been confirmed both theoretically and by simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The single-electron transistor (SET) is one of the best candidates for future nano electronic circuits because of its ultralow power consumption, small size and unique functionality. SET devices operate on the principle of Coulomb blockade, which is more prominent at dimensions of a few nano meters. Typically, the SET device consists of two capacitively coupled ultra-small tunnel junctions with a nano island between them. In order to observe the Coulomb blockade effects in a SET device the charging energy of the device has to be greater that the thermal energy. This condition limits the operation of most of the existing SET devices to cryogenic temperatures. Room temperature operation of SET devices requires sub-10nm nano-islands due to the inverse dependence of charging energy on the radius of the conducting nano-island. Fabrication of sub-10nm structures using lithography processes is still a technological challenge. In the present investigation, Focused Ion Beam based etch and deposition technology is used to fabricate single electron transistors devices operating at room temperature. The SET device incorporates an array of tungsten nano-islands with an average diameter of 8nm. The fabricated devices are characterized at room temperature and clear Coulomb blockade and Coulomb oscillations are observed. An improvement in the resolution limitation of the FIB etching process is demonstrated by optimizing the thickness of the active layer. SET devices with structural and topological variation are developed to explore their impact on the behavior of the device. The threshold voltage of the device was minimized to ~500mV by minimizing the source-drain gap of the device to 17nm. Vertical source and drain terminals are fabricated to realize single-dot based SET device. A unique process flow is developed to fabricate Si dot based SET devices for better gate controllability in the device characteristic. The device vi parameters of the fabricated devices are extracted by using a conductance model. Finally, characteristic of these devices are validated with the simulated data from theoretical modeling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis develops high performance real-time signal processing modules for direction of arrival (DOA) estimation for localization systems. It proposes highly parallel algorithms for performing subspace decomposition and polynomial rooting, which are otherwise traditionally implemented using sequential algorithms. The proposed algorithms address the emerging need for real-time localization for a wide range of applications. As the antenna array size increases, the complexity of signal processing algorithms increases, making it increasingly difficult to satisfy the real-time constraints. This thesis addresses real-time implementation by proposing parallel algorithms, that maintain considerable improvement over traditional algorithms, especially for systems with larger number of antenna array elements. Singular value decomposition (SVD) and polynomial rooting are two computationally complex steps and act as the bottleneck to achieving real-time performance. The proposed algorithms are suitable for implementation on field programmable gated arrays (FPGAs), single instruction multiple data (SIMD) hardware or application specific integrated chips (ASICs), which offer large number of processing elements that can be exploited for parallel processing. The designs proposed in this thesis are modular, easily expandable and easy to implement. Firstly, this thesis proposes a fast converging SVD algorithm. The proposed method reduces the number of iterations it takes to converge to correct singular values, thus achieving closer to real-time performance. A general algorithm and a modular system design are provided making it easy for designers to replicate and extend the design to larger matrix sizes. Moreover, the method is highly parallel, which can be exploited in various hardware platforms mentioned earlier. A fixed point implementation of proposed SVD algorithm is presented. The FPGA design is pipelined to the maximum extent to increase the maximum achievable frequency of operation. The system was developed with the objective of achieving high throughput. Various modern cores available in FPGAs were used to maximize the performance and details of these modules are presented in detail. Finally, a parallel polynomial rooting technique based on Newton’s method applicable exclusively to root-MUSIC polynomials is proposed. Unique characteristics of root-MUSIC polynomial’s complex dynamics were exploited to derive this polynomial rooting method. The technique exhibits parallelism and converges to the desired root within fixed number of iterations, making this suitable for polynomial rooting of large degree polynomials. We believe this is the first time that complex dynamics of root-MUSIC polynomial were analyzed to propose an algorithm. In all, the thesis addresses two major bottlenecks in a direction of arrival estimation system, by providing simple, high throughput, parallel algorithms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the development and capabilities of the Smart Home system, people today are entering an era in which household appliances are no longer just controlled by people, but also operated by a Smart System. This results in a more efficient, convenient, comfortable, and environmentally friendly living environment. A critical part of the Smart Home system is Home Automation, which means that there is a Micro-Controller Unit (MCU) to control all the household appliances and schedule their operating times. This reduces electricity bills by shifting amounts of power consumption from the on-peak hour consumption to the off-peak hour consumption, in terms of different “hour price”. In this paper, we propose an algorithm for scheduling multi-user power consumption and implement it on an FPGA board, using it as the MCU. This algorithm for discrete power level tasks scheduling is based on dynamic programming, which could find a scheduling solution close to the optimal one. We chose FPGA as our system’s controller because FPGA has low complexity, parallel processing capability, a large amount of I/O interface for further development and is programmable on both software and hardware. In conclusion, it costs little time running on FPGA board and the solution obtained is good enough for the consumers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The widespread of low cost embedded electronics makes it easier to implement the smart devices that can understand either the environment or the user behaviors. The main object of this project is to design and implement home use portable smart electronics, including the portable monitoring device for home and office security and the portable 3D mouse for convenient use. Both devices in this project use the MPU6050 which contains a 3 axis accelerometer and a 3 axis gyroscope to sense the inertial motion of the door or the human hands movement. For the portable monitoring device for home and office security, MPU6050 is used to sense the door (either home front door or cabinet door) movement through the gyroscope, and Raspberry Pi is then used to process the data it receives from MPU6050, if the data value exceeds the preset threshold, Raspberry Pi would control the USB Webcam to take a picture and then send out an alert email with the picture to the user. The advantage of this device is that it is a small size portable stand-alone device with its own power source, it is easy to implement, really cheap for residential use, and energy efficient with instantaneous alert. For the 3D mouse, the MPU6050 would use both the accelerometer and gyroscope to sense user hands movement, the data are processed by MSP430G2553 through a digital smooth filter and a complementary filter, and then the filtered data will pass to the personal computer through the serial COM port. By applying the cursor movement equation in the PC driver, this device can work great as a mouse with acceptable accuracy. Compared to the normal optical mouse we are using, this mouse does not need any working surface, with the use of the smooth and complementary filter, it has certain accuracy for normal use, and it is easy to be extended to a portable mouse as small as a finger ring.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High Angular Resolution Diffusion Imaging (HARDI) techniques, including Diffusion Spectrum Imaging (DSI), have been proposed to resolve crossing and other complex fiber architecture in the human brain white matter. In these methods, directional information of diffusion is inferred from the peaks in the orientation distribution function (ODF). Extensive studies using histology on macaque brain, cat cerebellum, rat hippocampus and optic tracts, and bovine tongue are qualitatively in agreement with the DSI-derived ODFs and tractography. However, there are only two studies in the literature which validated the DSI results using physical phantoms and both these studies were not performed on a clinical MRI scanner. Also, the limited studies which optimized DSI in a clinical setting, did not involve a comparison against physical phantoms. Finally, there is lack of consensus on the necessary pre- and post-processing steps in DSI; and ground truth diffusion fiber phantoms are not yet standardized. Therefore, the aims of this dissertation were to design and construct novel diffusion phantoms, employ post-processing techniques in order to systematically validate and optimize (DSI)-derived fiber ODFs in the crossing regions on a clinical 3T MR scanner, and develop user-friendly software for DSI data reconstruction and analysis. Phantoms with a fixed crossing fiber configuration of two crossing fibers at 90° and 45° respectively along with a phantom with three crossing fibers at 60°, using novel hollow plastic capillaries and novel placeholders, were constructed. T2-weighted MRI results on these phantoms demonstrated high SNR, homogeneous signal, and absence of air bubbles. Also, a technique to deconvolve the response function of an individual peak from the overall ODF was implemented, in addition to other DSI post-processing steps. This technique greatly improved the angular resolution of the otherwise unresolvable peaks in a crossing fiber ODF. The effects of DSI acquisition parameters and SNR on the resultant angular accuracy of DSI on the clinical scanner were studied and quantified using the developed phantoms. With a high angular direction sampling and reasonable levels of SNR, quantification of a crossing region in the 90°, 45° and 60° phantoms resulted in a successful detection of angular information with mean ± SD of 86.93°±2.65°, 44.61°±1.6° and 60.03°±2.21° respectively, while simultaneously enhancing the ODFs in regions containing single fibers. For the applicability of these validated methodologies in DSI, improvement in ODFs and fiber tracking from known crossing fiber regions in normal human subjects were demonstrated; and an in-house software package in MATLAB which streamlines the data reconstruction and post-processing for DSI, with easy to use graphical user interface was developed. In conclusion, the phantoms developed in this dissertation offer a means of providing ground truth for validation of reconstruction and tractography algorithms of various diffusion models (including DSI). Also, the deconvolution methodology (when applied as an additional DSI post-processing step) significantly improved the angular accuracy of the ODFs obtained from DSI, and should be applicable to ODFs obtained from the other high angular resolution diffusion imaging techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a heterogeneous network composed of femtocells deployed within a macrocell network is considered, and a quality-of-service (QoS)-oriented fairness metric which captures important characteristics of tiered network architectures is proposed. Using homogeneous Poisson processes, the sum capacities in such networks are expressed in closed form for co-channel, dedicated channel, and hybrid resource allocation methods. Then a resource splitting strategy that simultaneously considers capacity maximization, fairness constraints, and QoS constraints is proposed. Detailed computer simulations utilizing 3GPP simulation assumptions show that a hybrid allocation strategy with a well-designed resource split ratio enjoys the best cell-edge user performance, with minimal degradation in the sum throughput of macrocell users when compared with that of co-channel operation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Theoretical research and specific surface area analysis of nitrogen adsorption indicated that a lot of structural micropores exist in sepiolite minerals fibers. However, the microporous size, existing form, and the distribution relationship between microporous structures were not proved yet. In this paper, the section TEM samples of nanofibers were prepared on the basis of the metal embedding and cutting technique, and the inner structure of sepiolite nanofibers was observed by TEM. The results showed that sepiolite fibers have multiplayer structure similar to concentric circles, and many micropores with the size of about 2–5 nm are normal and parallel to the -axis. The reason for the previously mentioned phenomenon was explained by using BET analysis and X-ray diffraction analysis results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work consists on the design and implementation of a complete monitored security system. Two computers make up the basic system: one computer is the transmitter and the other is the receiver. Both computers interconnect by modems. Depending on the status of the input sensors (magnetic contacts, motion detectors and others) the transmitter detects an alarm condition and sends a detailed report of the event via modem to the receiver computer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Effective interaction with personal computers is a basic requirement for many of the functions that are performed in our daily lives. With the rapid emergence of the Internet and the World Wide Web, computers have become one of the premier means of communication in our society. Unfortunately, these advances have not become equally accessible to physically handicapped individuals. In reality, a significant number of individuals with severe motor disabilities, due to a variety of causes such as Spinal Cord Injury (SCI), Amyothrophic Lateral Sclerosis (ALS), etc., may not be able to utilize the computer mouse as a vital input device for computer interaction. The purpose of this research was to further develop and improve an existing alternative input device for computer cursor control to be used by individuals with severe motor disabilities. This thesis describes the development and the underlying principle for a practical hands-off human-computer interface based on Electromyogram (EMG) signals and Eye Gaze Tracking (EGT) technology compatible with the Microsoft Windows operating system (OS). Results of the software developed in this thesis show a significant improvement in the performance and usability of the EMG/EGT cursor control HCI.